DASSO: connections between the Dantzig selector and lasso
暂无分享,去创建一个
[1] Hanif D. Sherali,et al. Linear Programming and Network Flows , 1977 .
[2] L. Breiman. Better subset regression using the nonnegative garrote , 1995 .
[3] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[4] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[5] D. Donoho,et al. Atomic Decomposition by Basis Pursuit , 2001 .
[6] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[7] Xiaotong Shen,et al. Adaptive Model Selection , 2002 .
[8] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[9] D. Madigan,et al. [Least Angle Regression]: Discussion , 2004 .
[10] B. Turlach. Discussion of "Least Angle Regression" by Efron, Hastie, Johnstone and Tibshirani , 2004 .
[11] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[12] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[13] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[14] D. Donoho. For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .
[15] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[16] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[17] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[18] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[19] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[20] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[21] S. Rosset,et al. Piecewise linear regularized solution paths , 2007, 0708.2197.
[22] E. Candès,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[23] Mark D. Plumbley. On Polar Polytopes and the Recovery of Sparse Representations , 2007, IEEE Trans. Inf. Theory.
[24] N. Meinshausen,et al. Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig , 2007, 0803.3134.
[25] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[26] R. Tibshirani,et al. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n , 2007, 0803.3126.
[27] Nicolai Meinshausen,et al. Relaxed Lasso , 2007, Comput. Stat. Data Anal..
[28] R. Tibshirani,et al. Discussion of "the Dantzig selector" , 2007 .
[29] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[30] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[31] Gareth M. James,et al. A generalized Dantzig selector with shrinkage tuning , 2009 .
[32] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.