Extreme Precipitation Estimation Using Satellite-Based PERSIANN-CCS Algorithm

The need for frequent observations of precipitation is critical to many hydrological applications. The recently developed high resolution satellite-based precipitation algorithms that generate precipitation estimates at sub-daily scale provide a great potential for such purpose. This chapter describes the concept of developing high resolution Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). Evaluation of PERSIANN-CCS precipitation is demonstrated through the extreme precipitation events from two hurricanes: Ernesto in 2006 and Katrina in 2005. Finally, the global near real-time precipitation data service through the UNESCO G-WADI data server is introduced. The query functions for viewing and accessing the data are included in the chapter.

[1]  W. Woodley,et al.  Rain Estimation from Geosynchronous Satellite Imagery—Visible and Infrared Studies , 1978 .

[2]  Michel Desbois,et al.  Automatic classification of clouds on Meteosat imagery - Application to high-level clouds , 1982 .

[3]  Finbarr O'Sullivan,et al.  Rain Estimation from Infrared and Visible GOES Satellite Data , 1990 .

[4]  D. Rosenfeld,et al.  Climatologically tuned reflectivity-rain rate relations and links to area-time integrals , 1990 .

[5]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  R. Brown,et al.  Delineation of Precipitation Areas Using Meteosat Infrared and Visible Data in the Region of the United Kingdom , 1993 .

[7]  Moncef Gabbouj,et al.  Fast watershed algorithms: analysis and extensions , 1994, Electronic Imaging.

[8]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[9]  Toshiyuki Kurino A satellite infrared technique for estimating “deep/shallow” precipitation , 1997 .

[10]  R. Scofield,et al.  The Operational GOES Infrared Rainfall Estimation Technique , 1998 .

[11]  Kuolin Hsu,et al.  Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation , 1999 .

[12]  M. Todd,et al.  A Combined Satellite Infrared and Passive Microwave Technique for Estimation of Small-Scale Rainfall , 1999 .

[13]  S. Sorooshian,et al.  A Microwave Infrared Threshold Technique to Improve the GOES Precipitation Index , 1999 .

[14]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[15]  Chris Kidd,et al.  Rainfall Estimation from a Combination of TRMM Precipitation Radar and GOES Multispectral Satellite Imagery through the Use of an Artificial Neural Network , 2000 .

[16]  A. Gruber,et al.  GOES Multispectral Rainfall Algorithm (GMSRA) , 2001 .

[17]  Chris Kidd,et al.  Satellite Rainfall Estimation Using a Combined Pasive Microwave and Infrared Algorithm. , 2003 .

[18]  Sharon E. Nicholson,et al.  Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products , 2003 .

[19]  Sharon E. Nicholson,et al.  Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part I: Validation of GPCC Rainfall Product and Pre-TRMM Satellite and Blended Products , 2003 .

[20]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[21]  Frank S. Marzano,et al.  Multivariate statistical integration of Satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Y. Hong,et al.  Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System , 2004 .

[23]  T. Bellerby,et al.  A Feature-Based Approach to Satellite Precipitation Monitoring Using Geostationary IR Imagery , 2004 .

[24]  F. J. Turk,et al.  Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[25]  B. J. Conway,et al.  Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks , 2005 .

[26]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[27]  Kuolin Hsu,et al.  Rainfall Estimation Using a Cloud Patch Classification Map , 2007 .

[28]  Young-Seuk Park,et al.  Self-Organizing Map , 2008 .

[29]  Kuolin Hsu,et al.  LMODEL: A Satellite Precipitation Methodology Using Cloud Development Modeling. Part I: Algorithm Construction and Calibration , 2009 .

[30]  Z. Kawasaki,et al.  A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data , 2009 .

[31]  S. Sorooshian,et al.  LMODEL: A Multi-Sensor Satellite Precipitation Algorithm Using Cloud Development Modeling and Model Updating , 2009 .

[32]  Kuolin Hsu,et al.  LMODEL: A Satellite Precipitation Methodology Using Cloud Development Modeling. Part II: Validation , 2009 .

[33]  Kuolin Hsu,et al.  PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis , 2009 .

[34]  Kuolin Hsu,et al.  Evaluating the Utility of Multispectral Information in Delineating the Areal Extent of Precipitation , 2009 .