Palladium Complexes of Phosphane-Functionalised Carbosilane Dendrimers as Catalysts in a Continuous-Flow Membrane Reactor

Phosphane-functionalised carbosilane dendrimers 9, 10, 11, 12, 13, 19 and 20 have been synthesised, and their palladium complexes have been used as catalysts in the allylic substitution reaction. The catalytic sites at the periphery of the dendrimer support are readily accessible to the substrate, which is reflected − also for the larger dendrimeric systems − in the high catalytic activity. Moreover, the higher generations are sufficiently large to be retained by a nanofilter, and dendrimeric catalysts 13 and 20 have been applied in a continuous-flow membrane reactor. The stability of the palladium complexes of the phosphane-functionalised dendrimers is crucial for application in a continuous process of this type, and appeared to be very sensitive to small changes in the dendrimeric structure. (© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

[1]  D. Bergbreiter,et al.  Tridentate SCS Palladium(II) Complexes: New, Highly Stable, Recyclable Catalysts for the Heck Reaction , 1999 .

[2]  Jean-Claude Daran,et al.  Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery , 2000 .

[3]  P. Arya,et al.  Heck reaction using palladium complexed to dendrimers on silica , 2000 .

[4]  E. W. Meijer,et al.  About Dendrimers: Structure, Physical Properties, and Applications. , 1999, Chemical reviews.

[5]  F. Vögtle,et al.  Dendrimers: From Design to Application-A Progress Report. , 1999, Angewandte Chemie.

[6]  A. Wilkinson,et al.  314. Some observations on the preparation of π-allylic palladium chloride complexes , 1964 .

[7]  A. Muzafarov,et al.  Polyhydroxycarbosilanes of dendritic structure , 1997 .

[8]  J. Reek,et al.  Transition Metal Catalysis Using Functionalized Dendrimers. , 2001, Angewandte Chemie.

[9]  Arjan W. Kleij,et al.  The "Dendritic Effect" in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(II) Catalysts: Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition. , 2000, Angewandte Chemie.

[10]  R. Ostrander,et al.  Synthesis of an Organosilicon Dendrimer Containing 324 Si-H Bonds , 1994 .

[11]  B. Trost,et al.  Asymmetric Transition Metal-Catalyzed Allylic Alkylations. , 1996, Chemical reviews.

[12]  Manfred T. Reetz,et al.  Allylic Substitution with Dendritic Palladium Catalysts in a Continuously Operating Membrane Reactor , 1999 .

[13]  C. J. Elsevier,et al.  Influence of ligands and anions on the rate of carbon monoxide insertion into palladium-methyl bonds in the complexes (P-P)Pd(CH3)Cl and [(P-P)Pd(CH3)(L)]+SO3CF3- (P-P = dppe, dppp, dppb, dppf; L = CH3CN, PPh3) , 1992 .

[14]  A. Vougioukas,et al.  Metal complexes of two potentially bidentate silicon-backbone phosphine ligands , 1985 .

[15]  T. Aida,et al.  Molecular Design and Functions of Bioinspired Dendrimers , 1999 .

[16]  F. Diederich,et al.  Book review: Metal-catalyzed cross-coupling reactions. F. Diederich and P. J. Stang (eds) Wiley–VCH, Weinheim, 1998. xxi + 517 pages, £85 ISBN 3–527–29421–X , 1998 .

[17]  J. Roovers,et al.  Synthesis of novel carbosilane dendritic macromolecules , 1993 .

[18]  M. Reetz,et al.  Systhesis and Catalytic Activity of Dendritic Diphosphane Metal Complexes , 1997 .

[19]  J. Reek,et al.  Catalysis in the core of a carbosilane dendrimer , 1999 .

[20]  Y. Uozumi,et al.  NEW AMPHIPHILIC PALLADIUM-PHOSPHINE COMPLEXES BOUND TO SOLID SUPPORTS : PREPARATION AND USE FOR CATALYTIC ALLYLIC SUBSTITUTION IN AQUEOUS MEDIA , 1997 .

[21]  I. Cuadrado,et al.  Organometallic silicon dendrimers , 1994 .

[22]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[23]  Anthony L. Spek,et al.  Palladium complexes of phosphine functionalised carbosilane dendrimers as catalysts in a continuous flow membrane reactor , 1999 .

[24]  F. Vögtle,et al.  Dendrimers: From Generations and Functional Groups to Functions , 1995 .

[25]  U. Kragl,et al.  Selective Hydrovinylation of Styrene in a Membrane Reactor: Use of Carbosilane Dendrimers with Hemilabile P,O Ligands. , 1999, Angewandte Chemie.

[26]  A. Caminade,et al.  Phosphorus-Containing Dendrimers as Multidentate Ligands: Palladium, Platinum, and Rhodium Complexes , 1997 .

[27]  P. Coucke,et al.  Rhodium catalysed hydroformylation using diphenylphosphine functionalised carbosilane dendrimers , 2000 .

[28]  I. Hamachi,et al.  Synthesis, metal-binding properties and polypeptide solubilization of ‘crowned’ arborols , 1994 .

[29]  D. Laurenti,et al.  Dramatic acceleration of the catalytic process of the amination of allyl acetates in the presence of a tetraphosphine/palladium system , 2001 .

[30]  D. M. Grove,et al.  Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes , 1994, Nature.

[31]  Arjan W. Kleij,et al.  Halide-Assisted Macrocyclic Ring Formation in Cyclometalated Carbosilane Dendrimers with 1-[C6H3(CH2NMe2)-4-(PdCl)-3] Peripheral Groups: Application as Aldol Condensation Catalysts , 2001 .

[32]  R. Puddephatt,et al.  Divergent Route to Organoplatinum or Platinum−Palladium Dendrimers , 1996 .

[33]  V. Balzani,et al.  Arborols Based on Luminescent and Redox‐Active Transition Metal Complexes , 1992 .

[34]  R. Schneider,et al.  Dendrimers based on cyclophosphazene units and containing chiral ferrocenyl ligands for asymmetric catalysis , 1999 .

[35]  U. Kragl,et al.  Continuous Asymmetric Synthesis in a Membrane Reactor , 1996 .

[36]  A. Caminade,et al.  Dendrimers containing heteroatoms (si, p, B, ge, or bi). , 1999, Chemical reviews.

[37]  H. Brunner Dendrizymes: Expanded ligands for enantioselective catalysis , 1995 .

[38]  P. V. Leeuwen,et al.  Novel amphiphilic diphosphines: synthesis, rhodium complexes, use in hydroformylation and rhodium recycling , 1996 .

[39]  Jastrzebski,et al.  Phosphino carboxylic acid ester functionalized carbosilane dendrimers: nanoscale ligands for the Pd-catalyzed hydrovinylation reaction in a membrane reactor , 2000, The Journal of organic chemistry.

[40]  F. Diederich,et al.  Dendritic Porphyrins: Modulating Redox Potentials of Electroactive Chromophores with Pendant Multifunctionality , 1994 .

[41]  O. Stéphan,et al.  MONO AND DIPHOSPHINE BORANE COMPLEXES GRAFTED ON POLYPYRROLE MATRIX: DIRECT USE AS SUPPORTED LIGANDS FOR RH AND PD CATALYSIS , 1998 .

[42]  R. Mülhaupt,et al.  Dendritic polyols based on carbosilanes ‐ lipophilic dendrimers with hydrophilic skin , 1996 .

[43]  F. Maltais,et al.  Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica , 1999 .

[44]  George R. Newkome,et al.  MICELLES. PART 1. CASCADE MOLECULES: A NEW APPROACH TO MICELLES. A (27)-ARBOROL , 1985 .

[45]  E. Constable,et al.  Metallomicellanols: incorporation of ruthenium(II)–2,2′: 6′,2″-terpyridine triads into cascade polymers , 1993 .

[46]  D. Seebach,et al.  Polymer‐ and Dendrimer‐Bound Ti‐TADDOLates in Catalytic (and Stoichiometric) Enantioselective Reactions: Are pentacoordinate cationic Ti complexes the catalytically active species? , 1996 .

[47]  C. Mak,et al.  Dendritic Bis(oxazoline)copper(II) Catalysts. 2.1 Synthesis, Reactivity, and Substrate Selectivity , 1997 .

[48]  H. Oevering,et al.  On the Influence of the Bite Angle of Bidentate Phosphane Ligands on theRegioselectivity in Allylic Alkylation , 1999 .

[49]  K. Suslick,et al.  Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .

[50]  C. Bolm,et al.  HYPERBRANCHED CHIRAL CATALYSTS FOR THE ASYMMETRIC REDUCTION OF KETONES WITH BORANE , 1999 .

[51]  E. Lukevics,,et al.  Quaternary onium hexachloroplatinates: novel hydrosilylation catalysts , 1987 .

[52]  R. V. Chaudhari,et al.  Highly active supported palladium catalyst for the regioselective synthesis of 2-arylpropionic acids by carbonylation , 1999 .

[53]  George R. Newkome,et al.  Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol , 1985 .

[54]  C. J. Elsevier,et al.  New neutral and cationic methylpalladium(II) complexes containing tridentate nitrogen ligands. Synthesis, reactivity and x-ray crystal structure of {σ-N-2-(N-isopropylcarbaldimino)-6-(N-isopropylcarbaldimino)-σ-N-pyridyl}(chloro)methylpalladium(II) and [{σ3-N,N′, N″-2, 2′:6′, 2″-terpyridyl}methylpal , 1990 .

[55]  D. Reinhoudt,et al.  Controlled assembly of nanosized metallodendrimers , 1996 .

[56]  D. Bergbreiter,et al.  Thermomorphic Rhodium(I) and Palladium(0) Catalysts , 1998 .

[57]  J. Reek,et al.  Divergent synthesis of carbosilane wedges as dendritic building blocks: a new strategy towards core functionalised carbosilane dendrimers , 1999 .

[58]  F. Diederich,et al.  Functional Dendrimers: Unique Biological Mimics , 1998 .