Long memory versus structural breaks: An overview
暂无分享,去创建一个
[1] Yoshihiro Yajima,et al. ON ESTIMATION OF LONG-MEMORY TIME SERIES MODELS , 1985 .
[2] Jan Beran,et al. Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .
[3] R. Leipus,et al. Rescaled variance and related tests for long memory in volatility and levels , 2003 .
[4] Jan Beran,et al. Local Polynomial Fitting with Long-Memory and Antipersistent errors , 1999 .
[5] R. Bhattacharya,et al. THE HURST EFFECT UNDER TRENDS , 1983 .
[6] Peter Hall,et al. Nonparametric regression with long-range dependence , 1990 .
[7] Javier Hidalgo,et al. Testing for structural change in a long-memory environment☆ , 1996 .
[8] James Davidson,et al. When Is a Time Series I(0)? Evaluating the Memory Properties of Nonlinear Dynamic Models , 2000 .
[9] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[10] Clive W. J. Granger,et al. Occasional Structural Breaks and Long Memory , 1999 .
[11] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[12] James Davidson,et al. THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS II , 2000, Econometric Theory.
[13] F. Diebold,et al. Long Memory and Regime Switching , 2000 .
[14] B. Mandelbrot. Limit Theorem on the Self-Normalized Range for Weakly and Strongly Dependent Process , 1975 .
[15] Rohit S. Deo,et al. The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .
[16] Clive W. J. Granger,et al. The typical spectral shape of an economic variable , 1966 .
[17] Jan Beran,et al. Nonparametric M-estimation with long-memory errors , 2000 .
[18] Patrice Abry,et al. Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.
[19] H. Künsch. Discrimination between monotonic trends and long-range dependence , 1986 .
[20] James Davidson,et al. THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS I , 2000, Econometric Theory.
[21] L. Horváth,et al. The effect of long-range dependence on change-point estimators , 1997 .
[22] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[23] T. Bollerslev,et al. MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .
[24] Walter Krämer,et al. The CUSUM test for OLS residuals , 1992 .
[25] Jan Beran,et al. On robust local polynomial estimation with long-memory errors , 2002 .
[26] Mark J. Jensen. Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .
[27] Jan Mielniczuk,et al. Nonparametric Regression Under Long-Range Dependent Normal Errors , 1995 .
[28] C. Granger,et al. AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .
[29] Ying-Wong Cheung,et al. Long Memory in Foreign-Exchange Rates , 1993 .
[30] Michael Lohre,et al. Persistenz und saisonale Abhängigkeiten in Abflüssen des Rheins , 2001 .
[31] P. Robinson. Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .
[32] Philipp Sibbertsen,et al. Log-periodogram estimation of the memory parameter of a long-memory process under trend , 2003 .
[33] Walter Krämer,et al. Testing for structural change in the presence of long memory , 2000 .
[34] J. Durbin,et al. Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .
[35] J. Bai,et al. Least squares estimation of a shift in linear processes , 1994 .
[36] Christian Gourieroux,et al. Memory and infrequent breaks , 2001 .
[37] C. Velasco,et al. Non-stationary log-periodogram regression , 1999 .
[38] J. R. Wallis,et al. Some long‐run properties of geophysical records , 1969 .
[39] H. Müller,et al. Local Polynomial Modeling and Its Applications , 1998 .
[40] D. Andrews,et al. Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .
[41] J. Geweke,et al. THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .
[42] R. Dahlhaus. Efficient parameter estimation for self-similar processes , 1989, math/0607078.
[43] M. Taqqu. Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.
[44] Murad S. Taqqu,et al. Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator , 1997 .
[45] R. Leipus,et al. Testing for long memory in the presence of a general trend , 2001, Journal of Applied Probability.