Long memory versus structural breaks: An overview

We discuss the increasing literature on misspecifying structural breaks or more general trends as long-range dependence. We consider tests on structural breaks in the long-memory regression model as well as the behaviour of estimators of the memory parameter when structural breaks or trends are in the data but long memory is not. Methods for distinguishing both of these phenomena are proposed.

[1]  Yoshihiro Yajima,et al.  ON ESTIMATION OF LONG-MEMORY TIME SERIES MODELS , 1985 .

[2]  Jan Beran,et al.  Maximum Likelihood Estimation of the Differencing Parameter for Invertible Short and Long Memory Autoregressive Integrated Moving Average Models , 1995 .

[3]  R. Leipus,et al.  Rescaled variance and related tests for long memory in volatility and levels , 2003 .

[4]  Jan Beran,et al.  Local Polynomial Fitting with Long-Memory and Antipersistent errors , 1999 .

[5]  R. Bhattacharya,et al.  THE HURST EFFECT UNDER TRENDS , 1983 .

[6]  Peter Hall,et al.  Nonparametric regression with long-range dependence , 1990 .

[7]  Javier Hidalgo,et al.  Testing for structural change in a long-memory environment☆ , 1996 .

[8]  James Davidson,et al.  When Is a Time Series I(0)? Evaluating the Memory Properties of Nonlinear Dynamic Models , 2000 .

[9]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[10]  Clive W. J. Granger,et al.  Occasional Structural Breaks and Long Memory , 1999 .

[11]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[12]  James Davidson,et al.  THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS II , 2000, Econometric Theory.

[13]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[14]  B. Mandelbrot Limit Theorem on the Self-Normalized Range for Weakly and Strongly Dependent Process , 1975 .

[15]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[16]  Clive W. J. Granger,et al.  The typical spectral shape of an economic variable , 1966 .

[17]  Jan Beran,et al.  Nonparametric M-estimation with long-memory errors , 2000 .

[18]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[19]  H. Künsch Discrimination between monotonic trends and long-range dependence , 1986 .

[20]  James Davidson,et al.  THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS I , 2000, Econometric Theory.

[21]  L. Horváth,et al.  The effect of long-range dependence on change-point estimators , 1997 .

[22]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[23]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[24]  Walter Krämer,et al.  The CUSUM test for OLS residuals , 1992 .

[25]  Jan Beran,et al.  On robust local polynomial estimation with long-memory errors , 2002 .

[26]  Mark J. Jensen Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter , 1997 .

[27]  Jan Mielniczuk,et al.  Nonparametric Regression Under Long-Range Dependent Normal Errors , 1995 .

[28]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[29]  Ying-Wong Cheung,et al.  Long Memory in Foreign-Exchange Rates , 1993 .

[30]  Michael Lohre,et al.  Persistenz und saisonale Abhängigkeiten in Abflüssen des Rheins , 2001 .

[31]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[32]  Philipp Sibbertsen,et al.  Log-periodogram estimation of the memory parameter of a long-memory process under trend , 2003 .

[33]  Walter Krämer,et al.  Testing for structural change in the presence of long memory , 2000 .

[34]  J. Durbin,et al.  Techniques for Testing the Constancy of Regression Relationships Over Time , 1975 .

[35]  J. Bai,et al.  Least squares estimation of a shift in linear processes , 1994 .

[36]  Christian Gourieroux,et al.  Memory and infrequent breaks , 2001 .

[37]  C. Velasco,et al.  Non-stationary log-periodogram regression , 1999 .

[38]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[39]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[40]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[41]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[42]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[43]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[44]  Murad S. Taqqu,et al.  Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator , 1997 .

[45]  R. Leipus,et al.  Testing for long memory in the presence of a general trend , 2001, Journal of Applied Probability.