On the Quantum Query Complexity of Local Search in Two and Three Dimensions
暂无分享,去创建一个
[1] Andris Ambainis. Polynomial degree vs. quantum query complexity , 2006, J. Comput. Syst. Sci..
[2] E. Wright,et al. Theorems in the additive theory of numbers , 2022 .
[3] D. Aldous. Minimization Algorithms and Random Walk on the $d$-Cube , 1983 .
[4] Miklos Santha,et al. Quantum and classical query complexities of local search are polynomially related , 2004, STOC.
[5] Mihalis Yannakakis,et al. How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[6] R. C. Bose,et al. Theorems in the additive theory of numbers , 1962 .
[7] Gilles Brassard,et al. Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..
[8] C. Esseen. Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .
[9] Donna Crystal Llewellyn,et al. Local optimization on graphs , 1989, Discret. Appl. Math..
[10] Yves F. Verhoeven. Enhanced algorithms for Local Search , 2006, Inf. Process. Lett..
[11] Andris Ambainis,et al. Quantum lower bounds by quantum arguments , 2000, STOC '00.
[12] Scott Aaronson,et al. Lower bounds for local search by quantum arguments , 2003, STOC '04.
[13] E. Haacke. Sequences , 2005 .
[14] Miklos Santha,et al. On the Black-Box Complexity of Sperner’s Lemma , 2008, Theory of Computing Systems.
[15] Shengyu Zhang. On the Power of Ambainis's Lower Bounds , 2004, ICALP.
[16] Xi Chen,et al. On algorithms for discrete and approximate brouwer fixed points , 2005, STOC '05.
[17] Miklos Santha,et al. On the Black-Box Complexity of Sperner's Lemma , 2005, FCT.
[18] Shengyu Zhang. New upper and lower bounds for randomized and quantum local search , 2006, STOC '06.
[19] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[20] Shengyu Zhang,et al. On the power of Ambainis lower bounds , 2005, Theor. Comput. Sci..
[21] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .