The Discovery of Six Recycled Pulsars from the Arecibo 327 MHz Drift-Scan Pulsar Survey

Recycled pulsars are old (≳108 yr) neutron stars that are descendants from close, interacting stellar systems. In order to understand their evolution and population, we must find and study the largest possible number of recycled pulsars in a way that is as unbiased as possible. In this work, we present the discovery and timing solutions of five recycled pulsars in binary systems (PSRs J0509+0856, J0709+0458, J0732+2314, J0824+0028, and J2204+2700) and one isolated millisecond pulsar (PSR J0154+1833). These were found in data from the Arecibo 327 MHz Drift-Scan Pulsar Survey (AO327). All these pulsars have a low dispersion measure (DM; ), and have a DM-determined distance of ≲3 kpc. Their timing solutions, with data spans ranging from 1 to ∼7 yr, include precise estimates of their spin and astrometric parameters, and for the binaries, precise estimates of their Keplerian binary parameters. Their orbital periods range from about 4 to 815 days and the minimum companion masses (assuming a pulsar mass of 1.4 M⊙) range from ∼0.06 to 1.11 M⊙. For two of the binaries we detect post-Keplerian parameters; in the case of PSR J0709+0458 we measure the component masses but with a low precision, in the not too distant future the measurement of the rate of advance of periastron and the Shapiro delay will allow very precise mass measurements for this system. Like several other systems found in the AO327 data, PSRs J0509+0854, J0709+0458, and J0732+2314 are now part of the NANOGrav timing array for gravitational wave detection.

[1]  R. Lynch,et al.  PSR J2234+0611: A New Laboratory for Stellar Evolution , 2018, The Astrophysical Journal.

[2]  S. McGaugh A Precise Milky Way Rotation Curve Model for an Accurate Galactocentric Distance , 2018, Research Notes of the AAS.

[3]  R. Lynch,et al.  Universality of free fall from the orbital motion of a pulsar in a stellar triple system , 2018, Nature.

[4]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[5]  P. Freire,et al.  An algorithm for determining the rotation count of pulsars , 2018, 1802.07211.

[6]  X. Siemens,et al.  PALFA Discovery of a Highly Relativistic Double Neutron Star Binary , 2018, 1802.01707.

[7]  G. Desvignes,et al.  PSR J1618-3921: a recycled pulsar in an eccentric orbit , 2018, 1801.07123.

[8]  P. S. Ray,et al.  The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.

[9]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar , 2017, 1711.07697.

[10]  M. Mclaughlin,et al.  Pulsar J1411+2551: A Low-mass Double Neutron Star System , 2017, 1711.09804.

[11]  D. Champion,et al.  A massive millisecond pulsar in an eccentric binary , 2016, 1611.03658.

[12]  R. N. Manchester,et al.  A NEW ELECTRON-DENSITY MODEL FOR ESTIMATION OF PULSAR AND FRB DISTANCES , 2016, 1610.09448.

[13]  J. Weisberg,et al.  RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16 , 2016, 1606.02744.

[14]  D. Kaplan,et al.  AN ECCENTRIC BINARY MILLISECOND PULSAR WITH A HELIUM WHITE DWARF COMPANION IN THE GALACTIC FIELD , 2016, 1601.08184.

[15]  M. Mclaughlin,et al.  PULSAR J0453+1559: A DOUBLE NEUTRON STAR SYSTEM WITH A LARGE MASS ASYMMETRY , 2015, 1509.08805.

[16]  M. Bailes,et al.  Gravitational waves from binary supermassive black holes missing in pulsar observations , 2015, Science.

[17]  N. Wex,et al.  Tempo: Pulsar timing data analysis , 2015 .

[18]  S. Ransom,et al.  PARKES RADIO SEARCHES OF FERMI GAMMA-RAY SOURCES AND MILLISECOND PULSAR DISCOVERIES , 2015, 1507.04451.

[19]  N. Langer,et al.  Ultra-stripped supernovae: progenitors and fate , 2015, 1505.00270.

[20]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[21]  B. Machenschalk,et al.  Einstein@Home DISCOVERY OF A PALFA MILLISECOND PULSAR IN AN ECCENTRIC BINARY ORBIT , 2015, 1504.03684.

[22]  J. Antoniadis ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS , 2014, 1411.4207.

[23]  R. Lynch,et al.  A millisecond pulsar in a stellar triple system , 2014, Nature.

[24]  M. Mclaughlin,et al.  GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY , 2013, 1307.8142.

[25]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[26]  M. Kramer,et al.  Formation of millisecond pulsars with CO white dwarf companions – II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions , 2012, 1206.1862.

[27]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.

[28]  M. Kramer,et al.  Formation of millisecond pulsars with CO white dwarf companions – I. PSR J1614−2230: evidence for a neutron star born massive , 2011, 1103.4996.

[29]  D. Thompson,et al.  THREE MILLISECOND PULSARS IN FERMI LAT UNASSOCIATED BRIGHT SOURCES , 2010, 1012.2862.

[30]  P. Freire,et al.  The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars , 2010, 1007.0933.

[31]  M. Mclaughlin,et al.  OBSERVATIONS AND MODELING OF RELATIVISTIC SPIN PRECESSION IN PSR J1141−6545 , 2010, 1001.1483.

[32]  G. Desvignes,et al.  Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant , 2009, 0908.0285.

[33]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[34]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[35]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[36]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[37]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[38]  T. Tauris,et al.  Formation and evolution of compact stellar X-ray sources , 2003, astro-ph/0303456.

[39]  F. Camilo,et al.  Precision timing measurements of PSR J1012+5307 , 2001, astro-ph/0102309.

[40]  E. S. Phinney,et al.  Pulsars as probes of newtonian dynamical systems , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[41]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[42]  T. Damour,et al.  On the orbital period change of the binary pulsar PSR 1913+16 , 1991 .

[43]  A. Cheng,et al.  A new class of radio pulsars , 1982, Nature.