Covariant quantum measurements that maximize the likelihood

We derive the class of covariant measurements that are optimal according to the maximum likelihood criterion. The optimization problem is fully resolved in the case of pure input states, under the physically meaningful hypotheses of unimodularity of the covariance group and measurability of the stability subgroup. The general result is applied to the case of covariant state estimation for finite dimension, and to the WeylHeisenberg displacement estimation in infinite dimension. We also consider estimation with multiple copies, and analyze the behavior of the likelihood versus the number of copies. A “continuous-variable” analog of the measurement of direction of the angular momentum with two antiparallel spins by Gisin and Popescu is given.

[1]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[2]  G. M. D'Ariano,et al.  Quantum universal detectors , 2004 .

[3]  C. Macchiavello,et al.  Isotropic phase squeezing and the arrow of time , 2000, quant-ph/0005043.

[4]  Jeffrey H. Shapiro,et al.  Phase and amplitude uncertainties in heterodyne detection , 1984 .

[5]  D. P. Zhelobenko Compact Lie Groups and Their Representations , 1973 .

[6]  N. Gisin,et al.  Spin Flips and Quantum Information for Antiparallel Spins , 1999 .

[7]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[8]  G. D’Ariano,et al.  Two-mode heterodyne phase detection. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  Yuen,et al.  Impossibility of measuring the wave function of a single quantum system. , 1996, Physical review letters.

[10]  G. M. D'Ariano,et al.  On the general problem of quantum phase estimation , 1998 .

[11]  A Peres,et al.  Entangled quantum states as direction indicators. , 2001, Physical review letters.

[12]  E Bagan,et al.  Aligning reference frames with quantum states. , 2001, Physical review letters.

[13]  Giacomo Mauro D'Ariano,et al.  QUANTUM ESTIMATION THEORY AND OPTICAL DETECTION , 1997 .

[14]  V. Buzek,et al.  Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles via Realizable Ge , 1997, quant-ph/9707028.

[15]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[17]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[18]  N. J. Cerf,et al.  Phase conjugation of continuous quantum variables , 2001 .

[19]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[20]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.

[21]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[22]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[23]  Communication of spin directions with product states and finite measurements , 2000, quant-ph/0012045.

[24]  Horace P. Yuen,et al.  Amplification of quantum states and noiseless photon amplifiers , 1986 .

[25]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[26]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[27]  Leonard Susskind,et al.  Quantum mechanical phase and time operator , 1964 .

[28]  A quantum measurement of the spin direction , 2001, quant-ph/0110065.

[29]  G. M. D'Ariano,et al.  Joint measurements via quantum cloning , 2000, quant-ph/0007062.

[30]  C. Helstrom Quantum detection and estimation theory , 1969 .

[31]  Anthony Chefles Unambiguous discrimination between linearly dependent states with multiple copies , 2001, quant-ph/0105016.

[32]  Physical realizations of quantum operations , 2003, quant-ph/0305180.