The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations

For the Lagrange interpolation it is known that optimal order error estimates hold for elements satisfying the maximum angle condition. The objective of this paper is to obtain similar results for the Raviart--Thomas interpolation arising in the analysis of mixed methods. We prove that optimal order error estimates hold under the maximum angle condition for this interpolation both in two and three dimensions and, moreover, that this condition is indeed necessary to have these estimates. Error estimates for the mixed approximation of second order elliptic problems and for the nonconforming piecewise linear approximation of the Stokes equations are derived from our results.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[3]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[4]  N. Shenk,et al.  Uniform error estimates for certain narrow Lagrange finite elements , 1994 .

[5]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[6]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[7]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[8]  J. Meinguet A PRACTICAL METHOD FOR OBTAINING A PRIORI ERROR BOUNDS IN POINTWISE AND MEAN-SQUARE APPROXIMATION PROBLEMS , 1984 .

[9]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[10]  P. Jamet Estimations d'erreur pour des éléments finis droits presque dégénérés , 1976 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[15]  Ricardo G. Durán,et al.  Error estimates for 3-d narrow finite elements , 1999, Math. Comput..

[16]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[17]  Christine Bernardi,et al.  Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .