Hardware Demonstration of Atomic Force Microscopy Imaging Via Compressive Sensing and $\mu$-Path Scans

In this paper we describe an implementation of non-raster scanning of atomic force microscopy images where randomly placed short scans are combined with compressive-sensing based image reconstruction algorithms to produce the final image. We describe implementation details and compare the achievable imaging rate and image quality to raster-scanned images. Our experimental results show improvements of up to approximately a five times reduction in scanning time while revealing several practical challenges.

[1]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[2]  Pascal Getreuer,et al.  Enhancement and Recovery in Atomic Force Microscopy Images , 2012 .

[3]  M. S. Rana,et al.  Spiral Scanning With Improved Control for Faster Imaging of AFM , 2014, IEEE Transactions on Nanotechnology.

[4]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[5]  Sean B. Andersson,et al.  A compressed sensing measurement matrix for atomic force microscopy , 2014, 2014 American Control Conference.

[6]  A. Fleming,et al.  Bridging the gap between conventional and video-speed scanning probe microscopes. , 2010, Ultramicroscopy.

[7]  Sean B. Andersson,et al.  A fast image reconstruction algorithm for compressed sensing-based atomic force microscopy , 2015, 2015 American Control Conference (ACC).

[8]  Avishy Carmi,et al.  Compressive System Identification , 2014 .

[9]  I. A. Mahmood,et al.  Fast spiral-scan atomic force microscopy , 2009, Nanotechnology.

[10]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[11]  Daniel Y. Abramovitch,et al.  Dual-adaptive feedforward control for raster tracking with applications to AFMs , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[12]  Sean B. Andersson,et al.  Feature tracking for high speed AFM: Experimental demonstration , 2017, 2017 American Control Conference (ACC).

[13]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[14]  Andrew J. Fleming,et al.  A comparison of scanning methods and the vertical control implications for scanning probe microscopy , 2018 .

[15]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[16]  N. Xi,et al.  Video rate Atomic Force Microscopy (AFM) imaging using compressive sensing , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[17]  M. J. Rost,et al.  Scanning probe microscopy at video-rate , 2008 .

[18]  K. Leang,et al.  Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner , 2012, IEEE/ASME Transactions on Mechatronics.

[19]  J. Lygeros,et al.  High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories , 2012, Nanotechnology.

[20]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[21]  Lucy Y. Pao,et al.  Non-raster sampling in atomic force microscopy: A compressed sensing approach , 2012, 2012 American Control Conference (ACC).

[22]  Thomas Arildsen,et al.  Structure assisted compressed sensing reconstruction of undersampled AFM images. , 2017, Ultramicroscopy.

[23]  Yang Li,et al.  Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope. , 2007, The Review of scientific instruments.

[24]  B. Bhikkaji,et al.  Integral Resonant Control of a Piezoelectric Tube Actuator for Fast Nanoscale Positioning , 2008, IEEE/ASME Transactions on Mechatronics.

[25]  S. Andersson,et al.  A comparison of reconstruction methods for undersampled atomic force microscopy images , 2015, Nanotechnology.

[26]  S. O. Reza Moheimani,et al.  Collocated Z-Axis Control of a High-Speed Nanopositioner for Video-Rate Atomic Force Microscopy , 2015, IEEE Transactions on Nanotechnology.

[27]  Peng Huang,et al.  Note: Fast imaging of DNA in atomic force microscopy enabled by a local raster scan algorithm. , 2014, The Review of scientific instruments.