Unsaturation in binuclear cyclopentadienylchromium carbonyl thiocarbonyls: Viability of (η5-C5H5)2Cr2(CS)2(CO)3 in contrast to (η5-C5H5)2Cr2(CO)5

[1]  H. Schaefer,et al.  Stabilization of binuclear chromium carbonyls by substitution of thiocarbonyl groups for carbonyl groups: nearly linear structures for Cr(2)(CS)(2)(CO)(9). , 2010, The journal of physical chemistry. A.

[2]  H. Schaefer,et al.  Binuclear cobalt thiocarbonyl carbonyl derivatives: comparison with homoleptic binuclear cobalt carbonyls. , 2009, Inorganic chemistry.

[3]  H. Schaefer,et al.  Iron carbonyl thiocarbonyls: effect of substituting a thiocarbonyl group for a carbonyl group in mononuclear and binuclear iron carbonyl derivatives. , 2009, Inorganic chemistry.

[4]  H. Schaefer,et al.  Beyond the metal-metal triple bond in binuclear cyclopentadienylchromium carbonyl chemistry. , 2008, Dalton transactions.

[5]  W. Petz 40 years of transition-metal thiocarbonyl chemistry and the related CSe and CTe compounds , 2008 .

[6]  Baiquan Wang,et al.  Unexpected reactions of (Me2C)(Me2Si)[(η5-C5H3)Mo(CO)3]2 with diazoalkane and carbon disulfide: Activation and cleavage of the NN bond and disproportionation of carbon disulfide , 2008 .

[7]  H. Schaefer,et al.  Spectroscopic detection and theoretical confirmation of the role of Cr2(CO)5(C5R5)2 and .Cr(CO)2(ketene)(C5R5) as intermediates in carbonylation of N=N=CHSiMe3 to O=C=CHSiMe3 by .Cr(CO)3(C5R5) (R = H, CH3). , 2007, Journal of the American Chemical Society.

[8]  J. Harvey,et al.  Computational study of the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. , 2006, Physical chemistry chemical physics : PCCP.

[9]  H. Schaefer,et al.  Concerning the precision of standard density functional programs : Gaussian, molpro, nwchem, Q-chem, and gamess , 2006 .

[10]  H. Schaefer,et al.  Remarkable aspects of unsaturation in trinuclear metal carbonyl clusters: the triiron species Fe3(CO)n (n = 12, 11, 10, 9). , 2006, Journal of the American Chemical Society.

[11]  Michael Bühl,et al.  Geometries of Transition-Metal Complexes from Density-Functional Theory. , 2006, Journal of chemical theory and computation.

[12]  H. Schaefer,et al.  Unsaturation in binuclear cyclopentadienyliron carbonyls. , 2006, Inorganic chemistry.

[13]  Filipp Furche,et al.  The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. , 2006, The Journal of chemical physics.

[14]  H. Schaefer,et al.  Binuclear cyclopentadienylcobalt carbonyls: comparison with binuclear iron carbonyls. , 2005, Journal of the American Chemical Society.

[15]  A. Sironi,et al.  Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities , 2003 .

[16]  D. Mastropaolo,et al.  Crystallographic study of dicarbonylpentamethylcyclopentadienylchromium dimer, a complex with a chromium-chromium triple bond , 2002 .

[17]  Jr.,et al.  On the integration accuracy in molecular density functional theory calculations using Gaussian basis sets , 2000, physics/0006069.

[18]  S. Niu,et al.  Theoretical studies on reactions of transition-metal complexes. , 2000, Chemical reviews.

[19]  T. Barckholtz,et al.  ON THE POSSIBLE STRUCTURES OF MN2(CO)8 : THEORETICAL SUPPORT FOR AN UNPRECEDENTED ASYMMETRIC UNBRIDGED ISOMER , 1998 .

[20]  Trevor F. Nolan,et al.  UNUSUAL STRUCTURE AND REACTIVITY OF THE PHOTOGENERATED INTERMEDIATE CP*CR(MU -CO)3CRCP* (CP* = ETA 5-C5ME5) , 1997 .

[21]  H. Jacobsen,et al.  Octacarbonyl Diiron. A Density Functional Study , 1996 .

[22]  Walter Thiel,et al.  Theoretical study of the vibrational spectra of the transition metal carbonyls M(CO)6 [M=Cr, Mo, W], M(CO)5 [M=Fe, Ru, Os], and M(CO)4 [M=Ni, Pd, Pt] , 1995 .

[23]  Hans Peter Lüthi,et al.  Binding energies, molecular structures, and vibrational frequencies of transition metal carbonyls using density functional theory with gradient corrections , 1994 .

[24]  G. Frenking,et al.  Structures and Bond Energies of the Transition Metal Hexacarbonyls M(CO)6 (M = Cr, Mo, W). A Theoretical Study , 1994 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  F. Stone,et al.  Synthesis and structure of the first example of a four-electron donor, side-on bridging thiocarbonyl ligand , 1989 .

[27]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[28]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[29]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[30]  B. A. Wilson,et al.  Dinuclear, 18-electron species having a triplet ground state: isolation, characterization, and crystal structure of photogenerated (.eta.5-C5Me5)2Fe2(.mu.-CO)3 , 1985 .

[31]  L. F. Dahl,et al.  Molecular structure of the MoMo triple-bonded pentamethylcyclopentadienylmolybdenum dimer, Mo2(η5-C5Me5)2(CO)4, and its geometrical relationship with the nonmethylated cyclopentadienyl analogue (MoMo) and corresponding chromium dimers (CrCr) , 1983 .

[32]  T. Meyer,et al.  Mechanistic aspects of the photochemistry of metal-metal bonds. Evidence for the intervention of two different primary photoproducts in the photochemistry of (eta/sup 5/-C/sub 5/H/sub 5/)/sub 2/Fe/sub 2/(CO)/sub 4/ , 1980 .

[33]  Diane M. Hood,et al.  Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4 , 1979 .

[34]  M. Curtis,et al.  The Crystal and Molecular Structure of Bis(cyclopentadienyldicarbonylchromium) (CrCr) , 1978 .

[35]  R. Jacobson,et al.  Synthesis of thiocarbonyl-bridged(η5-C5H5)2Fe2(CO)3(CS) and crystal structure of an s-alkylated derivative , 1978 .

[36]  I. Butler Transition-metal thiocarbonyls and selenocarbonyls , 1977 .

[37]  P. Yaneff Thiocarbonyl and related complexes of the transition metals , 1977 .

[38]  J. Clardy,et al.  Synthesis and structure of dicarbonyldi-η-cyclopentadienylbis(μ-thiocarbonyl)diiron, a thiocarbonyl analog of the dicarbonyl-η-cycglopentadienyliron dimer , 1976 .

[39]  I. Butler,et al.  .pi.-cyclopentadienylmanganese thiocarbonyl and carbon disulfide complexes , 1974 .

[40]  I. Butler,et al.  Activation of carbon disulphide by transition metal complexes , 1974 .

[41]  F. Cotton,et al.  Unusual structural and magnetic resonance properties of dicyclopentadienylhexacarbonyldichromium , 1974 .

[42]  R. King,et al.  Pentamethylcyclopentadienyl derivatives of transition metals , 1973 .

[43]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[44]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[45]  R. King,et al.  Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals , 1967 .

[46]  G. Schreckenbach,et al.  A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method , 1995 .

[47]  P. Broadhurst Transition-metal thiocarbonyl complexes: Preparative methods, reactivity and thiocarbonyl ligand bonding properties , 1985 .

[48]  A. Hepp,et al.  Photochemistry of (.eta.5-C5H5)2Fe2(CO)4 and related complexes in rigid matrixes at low temperature: loss of carbon monoxide from the trans isomer to yield triply CO-bridged species , 1984 .

[49]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[50]  I. Butler,et al.  Cyclopentadienylmanganese dicarbonyl thiocarbonyl , 1970 .