Excitation of Molecular Hydrogen in the Orion Bar PhotodissociationRegion from a Deep Near-infrared IGRINS Spectrum

We present a deep near-infrared spectrum of the Orion Bar Photodissociation Region (PDR) taken with the Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7 m telescope at the McDonald Observatory. IGRINS has high spectral resolution (R~45000) and instantaneous broad wavelength coverage (1.45-2.45 microns), enabling us to detect 87 emission lines from rovibrationally excited molecular hydrogen (H_2) that arise from transitions out of 69 upper rovibration levels of the electronic ground state. These levels cover a large range of rotational and vibrational quantum numbers and excitation energies, making them an excellent probe of the excitation mechanisms of H_2 and physical conditions within the PDR. The Orion Bar PDR is thought to consist of cooler high density clumps or filaments (T=50-250 K, n_H = 10^5 - 10^7 cm^-3) embedded in a warmer lower density medium (T=250-1000 K, n_H=10^4 - 10^5 cm^-3). We fit a grid of simple constant-temperature and constant-density Cloudy models, which recreate the observed H_2 level populations well, to constrain the temperature to a range of 600 to 650 K and the density to n_H = 2.5 x 10^3 to 10^4 cm^-3. The best fit model gives T = 625 K and n_H = 5x10^3 cm^-3. This well constrained warm temperature is consistent with kinetic temperatures found by other studies for the Orion Bar's lower density medium. However, the range of densities well fit by the model grid is marginally lower than those reported by other studies. We could be observing lower density gas than the surrounding medium, or perhaps a density-sensitive parameter in our models is not properly estimated.

[1]  Adam Kraus,et al.  CORRECTING FOR TELLURIC ABSORPTION: METHODS, CASE STUDIES, AND RELEASE OF THE TelFit CODE , 2014, 1406.6059.

[2]  J. L. Bourlot,et al.  The chemistry of ions in the Orion Bar I. - CH + , SH + , and CF + . The effect of high electron density and vibrationally excited H 2 in a warm PDR surface , 2012, 1212.4378.

[3]  F. Lique Revisited study of the ro-vibrational excitation of H2 by H: towards a revision of the cooling of astrophysical media , 2015 .

[4]  M. Röllig,et al.  Modelling clumpy photon-dominated regions in 3D. Understanding the Orion Bar stratification , 2017 .

[5]  HCN and HCO+ images of the Orion Bar photodissociation region , 1998 .

[6]  C. Joblin,et al.  Compression and ablation of the photo-irradiated molecular cloud the Orion Bar , 2016, Nature.

[7]  Alexander G. G. M. Tielens,et al.  Dense Photodissociation Regions (PDRs) , 1997 .

[8]  E. Pellegrini,et al.  ORION’S BAR: PHYSICAL CONDITIONS ACROSS THE DEFINITIVE H+/H0/H2 INTERFACE , 2008, 0811.1176.

[9]  P. Schilke,et al.  Dense Molecular Clumps in the Orion Bar Photon-dominated Region , 2003 .

[10]  Structure of Stationary Photodissociation Fronts , 1996, astro-ph/9603032.

[11]  A. Tielens,et al.  Line emission from clumpy photodissociation regions , 1990 .

[12]  H2 Pure Rotational Lines in the Orion Bar , 2005, astro-ph/0506003.

[13]  M. Luhman,et al.  Near-Infrared Spectroscopy of Photodissociation Regions: The Orion Bar and Orion S , 1998, astro-ph/9801009.

[14]  È. Roueff,et al.  Deuterium chemistry in the Orion Bar PDR - “Warm” chemistry starring CH2D+ , 2009, 0909.4683.

[15]  G. Ferland,et al.  PUMPING UP THE [N i] NEBULAR LINES , 2012, 1209.0028.

[16]  E. Pellegrini,et al.  A Magnetically Supported Photodissociation Region in M17 , 2006, astro-ph/0611808.

[17]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[18]  C. O’Dell Structure of the Orion Nebula , 2001 .

[19]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[20]  A. Sternberg,et al.  The infrared response of molecular hydrogen gas to ultraviolet radiation: high-density regions , 1989 .

[21]  G. Ferland,et al.  THE THREE-DIMENSIONAL DYNAMIC STRUCTURE OF THE INNER ORION NEBULA , 2008, 0810.4375.

[22]  J. L. Bourlot,et al.  Surface chemistry in the interstellar medium - I. H2 formation by Langmuir-Hinshelwood and Eley-Rideal mechanisms , 2012, 1202.0374.

[23]  T. Geballe,et al.  High spectral resolution observations of fluorescent molecular hydrogen in molecular clouds , 1990 .

[24]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[25]  B. Zuckerman A Model of the Orion Nebula , 1973 .

[26]  J. L. Bourlot,et al.  OH emission from warm and dense gas in the Orion Bar PDR , 2011, 1105.2623.

[27]  J. Black,et al.  Fluorescent excitation of interstellar H2 , 1987 .

[28]  G. Ferland,et al.  Molecular Hydrogen in Star-forming Regions: Implementation of its Microphysics in CLOUDY , 2005, astro-ph/0501485.

[29]  Andreas Kelz,et al.  A MUSE map of the central Orion Nebula (M 42) , 2015, 1507.00006.

[30]  J. Lacy,et al.  Detection of low-J pure-rotational emission from H2 in the Orion Bar region - Evidence for small-scale clumpiness , 1991 .

[31]  In-Soo Yuk,et al.  THREE-DIMENSIONAL SHOCK STRUCTURE OF THE ORION KL OUTFLOW WITH IGRINS , 2016, 1610.09459.

[32]  J. Adams,et al.  THE ORION H ii REGION AND THE ORION BAR IN THE MID-INFRARED , 2016, 1607.07811.

[33]  A. Gusdorf,et al.  The excitation of molecular hydrogen by atomic hydrogen in astrophysical media , 2007 .

[34]  I. Gatley,et al.  The molecular hydrogen emission associated with the Orion bright bar , 1985 .

[35]  P. Schilke,et al.  Carbon Radio Recombination Lines in the Orion Bar , 1997 .

[36]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[37]  In-Soo Yuk,et al.  Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS , 2016 .

[38]  H. Rix,et al.  A LARGE CATALOG OF ACCURATE DISTANCES TO MOLECULAR CLOUDS FROM PS1 PHOTOMETRY , 2014, 1403.3393.

[39]  P. P. van der Werf,et al.  Anatomy of the Photodissociation Region in the Orion Bar , 1993, Science.

[40]  G. Łach,et al.  Quantum Electrodynamics Effects in Rovibrational Spectra of Molecular Hydrogen. , 2011, Journal of chemical theory and computation.

[41]  G. Field,et al.  Hydrogen molecules in astronomy. , 1966 .

[42]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[43]  P. Lucas,et al.  A census of molecular hydrogen outflows and their sources along the Orion A molecular ridge - Characteristics and overall distribution , 2008, 0812.3733.

[44]  Jeong-Yeol Han,et al.  Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer) , 2014, Astronomical Telescopes and Instrumentation.

[45]  H. V. Regemorter,et al.  RATE OF COLLISIONAL EXCITATION IN STELLAR ATMOSPHERES , 1962 .

[46]  I. Simbotin,et al.  Quadrupole Transition Probabilities for the Excited Rovibrational States of H2 , 1998 .

[47]  I. Dabrowski The Lyman and Werner bands of H2 , 1984 .

[48]  Anatomy of a Photodissociation Region: High angular resolution images of molecular emission in the Orion Bar , 1994 .

[49]  T. Wilson,et al.  Kinetic temperatures in the Orion Bar , 2003 .

[50]  Jaejun Lee plp: Version 2.0 , 2015 .

[51]  ROTATIONALLY WARM MOLECULAR HYDROGEN IN THE ORION BAR , 2009, 0906.2310.

[52]  Detectability of Infrared H2 Emission Spectra with New Formation Pumping Models , 2001 .

[53]  A. Sternberg The infrared response of molecular hydrogen gas to ultraviolet radiation: a scaling law , 1988 .

[54]  J. Black,et al.  Interstellar H$sub 2$: The population of excited rotational states and the infrared response to ultraviolet radiation , 1976 .

[55]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[56]  A. Tielens,et al.  Models of clumpy photodissociation regions , 1993 .

[57]  P. Schilke,et al.  A recalibration of the interstellar ammonia thermometer , 1988 .