Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision

[1]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[2]  D. Berson,et al.  Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice , 2010, The Journal of comparative neurology.

[3]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[4]  B. Völgyi,et al.  Tracer coupling patterns of the ganglion cell subtypes in the mouse retina , 2009, The Journal of comparative neurology.

[5]  P. Kofuji,et al.  Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[6]  S. Hattar,et al.  Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation , 2008, Proceedings of the National Academy of Sciences.

[7]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[9]  Kenichiro Taniguchi,et al.  Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. , 2008, Journal of neurophysiology.

[10]  Satchidananda Panda,et al.  Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses , 2008, PloS one.

[11]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[12]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.

[13]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[14]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[15]  L. Chalupa,et al.  Morphological properties of mouse retinal ganglion cells during postnatal development , 2007, The Journal of comparative neurology.

[16]  Kwoon Y. Wong,et al.  Synaptic influences on rat ganglion‐cell photoreceptors , 2007, The Journal of physiology.

[17]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[18]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[19]  R. Hut,et al.  Immunohistochemical evidence of a melanopsin cone in human retina. , 2006, Investigative ophthalmology & visual science.

[20]  Kwoon Y. Wong,et al.  Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[21]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[22]  E. Turner,et al.  Brn3a-Expressing Retinal Ganglion Cells Project Specifically to Thalamocortical and Collicular Visual Pathways , 2005, The Journal of Neuroscience.

[23]  R M Douglas,et al.  Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system , 2005, Visual Neuroscience.

[24]  J. Kong,et al.  Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits , 2005, The Journal of comparative neurology.

[25]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[26]  J. Nathans,et al.  Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter , 2004, The Journal of comparative neurology.

[27]  R. Douglas,et al.  Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. , 2004, Investigative ophthalmology & visual science.

[28]  R. Douglas,et al.  Characterization of mouse cortical spatial vision , 2004, Vision Research.

[29]  J. Hannibal,et al.  Melanopsin containing retinal ganglion cells are light responsive from birth , 2004, Neuroreport.

[30]  G. A. Robinson,et al.  Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft , 2004, Vision Research.

[31]  G. Fain,et al.  Early receptor current of wild‐type and transducin knockout mice: photosensitivity and light‐induced Ca2+ release , 2004, The Journal of physiology.

[32]  Jessica D. Kaufman,et al.  Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus , 2003, Visual Neuroscience.

[33]  L. P. Morin,et al.  Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: Bifurcation and melanopsin immunoreactivity , 2003, The Journal of comparative neurology.

[34]  Robert J. Lucas,et al.  Calcium Imaging Reveals a Network of Intrinsically Light-Sensitive Inner-Retinal Neurons , 2003, Current Biology.

[35]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[36]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[37]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[38]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.

[39]  R. Benca,et al.  Fos immunoreactivity in rat subcortical visual shell in response to illuminance changes , 2002, Neuroscience.

[40]  N. Mrosovsky,et al.  Learned arbitrary responses to light in mice without rods or cones , 2002, Naturwissenschaften.

[41]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[42]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[43]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[44]  Scarla J. Weeks,et al.  Satellite imaging: Massive emissions of toxic gas in the Atlantic , 2002, Nature.

[45]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[46]  R. Moore,et al.  Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections , 2001, Brain Research.

[47]  R. Sidman,et al.  Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit , 2000 .

[48]  Caiying Guo,et al.  Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon cre‐mediated excision , 2000, Genesis.

[49]  R. Douglas,et al.  Behavioral assessment of visual acuity in mice and rats , 2000, Vision Research.

[50]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[51]  M. Seeliger,et al.  Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Lobe,et al.  Z/AP, a double reporter for cre-mediated recombination. , 1999, Developmental biology.

[53]  N. Mrosovsky,et al.  Spatial responses to light in mice with severe retinal degeneration , 1997, Neuroscience Letters.

[54]  M. Pu,et al.  Structure and function of retinal ganglion cells innervating the cat's geniculate wing: an in vitro study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  B. E. Reese,et al.  ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat , 1988, Brain Research Reviews.

[56]  J R Bartlett,et al.  Luxotonic responses of units in macaque striate cortex. , 1979, Journal of neurophysiology.

[57]  R. Cone Early Receptor Potential: Photoreversible Charge Displacement in Rhodopsin , 1967, Science.

[58]  S. Hattar,et al.  Multiple photoreceptors contribute to nonimage-forming visual functions predominantly through melanopsin-containing retinal ganglion cells. , 2007, Cold Spring Harbor symposia on quantitative biology.

[59]  M. Rollag,et al.  Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. , 2002, Nature.

[60]  R. Sidman,et al.  Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. , 2000, Proceedings of the National Academy of Sciences of the United States of America.