Quantum Electron Optics and its Applications

With the development of two-dimensional electron gas (2DEG) substrates and submicron lithography techniques, it has become possible to fabricate mesoscopic devices with length scales smaller than the inelastic and elastic scattering lengths of electrons at cryogenic temperatures. In these ballistic devices, the wave-nature of the electron can be probed through do conductance measurements, proportional to the first-order correlation function of the wavefunction amplitude. Electron focusing, diffraction, and Aharonov-Bohm interference experiments are examples of classical optical phenomena clearly observed in mesoscopic electron systems [1].

[1]  S. Tarucha,et al.  Quantum interference in electron collision , 1998, Nature.

[2]  G. V. Chester,et al.  Solid State Physics , 2000 .

[3]  Weinfurter,et al.  Interferometric Bell-state analysis. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  V. Umansky,et al.  Direct observation of a fractional charge , 1997, Nature.

[5]  Yamamoto,et al.  Hanbury brown and twiss-type experiment with electrons , 1999, Science.

[6]  R. E. Burgess,et al.  Homophase and heterophase fluctuations in semiconducting crystals , 1959 .

[7]  Mario Dagenais,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[8]  Y. Yamamoto,et al.  A single-photon turnstile device , 1999, Nature.

[9]  H. Shtrikman,et al.  Temporal correlation of electrons: Suppression of shot noise in a ballistic quantum point contact. , 1995, Physical review letters.

[10]  Holland,et al.  The fermionic hanbury brown and twiss experiment , 1999, Science.

[11]  Rajeev J Ram,et al.  Quantum dynamics of exciton lasers , 1996 .

[12]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[13]  Büttiker,et al.  Scattering theory of current and intensity noise correlations in conductors and wave guides. , 1992, Physical review. B, Condensed matter.

[14]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[15]  Kumar,et al.  Experimental test of the quantum shot noise reduction theory. , 1996, Physical review letters.

[16]  E. Purcell,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[17]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[18]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[19]  Yamamoto,et al.  Nyquist noise in the transition from mesoscopic to macroscopic transport. , 1994, Physical Review B (Condensed Matter).

[20]  R. H. Brown,et al.  The Question of Correlation between Photons in Coherent Light Rays , 1956, Nature.

[21]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[22]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[23]  R. Pound,et al.  Time-Correlated Photons , 1957, Nature.

[24]  Walther,et al.  Nonclassical radiation of a single stored ion. , 1987, Physical review letters.

[25]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[26]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[27]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[28]  Martin,et al.  Wave-packet approach to noise in multichannel mesoscopic systems. , 1992, Physical review. B, Condensed matter.

[29]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.