Video retrieval using successive modular operations on temporal similarity

Abstract A video retrieval system consists of two major subsystems for indexing and querying, respectively. In this paper, we propose a framework for retrieving video sequences using modular operations on temporal similarity. In the indexing process, the contents (objects) of a video sequence are used to build temporal triples representing temporal relationships between objects. For every temporal triple generated from different video sequences, a prime number is assigned to it by the proposed prime number assignment (PNA) algorithm. For each video sequence, a standing value is generated via its set of prime numbers. In the query process, successive modular operations (SMO) on the standing values are used to retrieve video sequences. Based on the PNA and the SMO, we built an experimental video retrieval system. From the simulation results, we notice that a query can be done in a linear time.

[1]  Haibin Lu,et al.  A hierarchical organization scheme for video data , 2002, Pattern Recognit..

[2]  Chi-Chun Lo,et al.  Video segmentation using a histogram-based fuzzy c-means clustering algorithm , 2001, Comput. Stand. Interfaces.

[3]  Özgür Ulusoy,et al.  A rule-based video database system architecture , 2002, Inf. Sci..

[4]  Suh-Yin Lee,et al.  Retrieval of similar pictures on pictorial databases , 1991, Pattern Recognit..

[5]  Chin-Chen Chang,et al.  A spatial match retrieval mechanism for symbolic pictures , 1998, J. Syst. Softw..

[6]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[7]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[8]  Wei Xiong,et al.  Query by video clip , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[9]  Chin-Chen Chang,et al.  Spatial Match Retrieval of Symbolic Pictures , 1991, J. Inf. Sci. Eng..

[10]  Ullas Gargi,et al.  Performance characterization of video-shot-change detection methods , 2000, IEEE Trans. Circuits Syst. Video Technol..

[11]  Rune Hjelsvold,et al.  A Temporal Foundation of Video Databases , 1995, Temporal Databases.

[12]  Katsumi Tanaka,et al.  OVID: Design and Implementation of a Video-Object Database System , 1993, IEEE Trans. Knowl. Data Eng..

[13]  Simone Santini,et al.  Integrated browsing and querying for image databases , 2000, IEEE MultiMedia.

[14]  Rune Hjelsvold,et al.  Searching and browsing a shared video database , 1995, Proceedings. International Workshop on Multi-Media Database Management Systems.

[15]  Atreyi Kankanhalli,et al.  Automatic partitioning of full-motion video , 1993, Multimedia Systems.

[16]  V. S. Subrahmanian,et al.  Querying Video Libraries* , 1996, J. Vis. Commun. Image Represent..

[17]  Keishi Tajima,et al.  A Query Model to Synthesize Answer Intervals from Indexed Video Units , 2001, IEEE Trans. Knowl. Data Eng..

[18]  Shi-Kuo Chang,et al.  An Intelligent Image Database System , 1988, IEEE Trans. Software Eng..

[19]  Otthein Herzog,et al.  Integrated information mining for texts, images, and videos , 1998, Comput. Graph..

[20]  Chin-Chen Chang,et al.  Similarity Retrieval on Pictorial Databases Based upon Module Operation , 1993, DASFAA.

[21]  Jing Xiao,et al.  Content-Based Video Indexing and Retrieval , 2004 .

[22]  Arif Ghafoor,et al.  Interval-Based Conceptual Models for Time-Dependent Multimedia Data , 1993, IEEE Trans. Knowl. Data Eng..

[23]  Chin-Chen Chang,et al.  On the Design of a Machine-Independent Perfect Hashing Scheme , 1991, Comput. J..