Simulation studies on the performance of the hydrogen electrode bonded to proton exchange membranes in the hydrogenbromine fuel cell

[1]  Peter S. Fedkiw,et al.  An Impregnation‐Reduction Method to Prepare Electrodes on Nafion SPE , 1989 .

[2]  R. Savinell,et al.  Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte] , 1988 .

[3]  Z. Ogumi,et al.  Gas Permeation in SPE Method II . Oxygen and Hydrogen Permeation Through Nafion , 1984 .

[4]  H. Nakajima,et al.  Metal electrodes bonded on solid polymer electrolyte membranes (SPE)—The behaviour of platinum bonded on SPE for hydrogen and oxygen electrode processes , 1983 .

[5]  R. Yeo Ion Clustering and Proton Transport in Nafion Membranes and Its Applications as Solid Polymer Electrolyte , 1983 .

[6]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[7]  Z. Ogumi,et al.  Application of the spe method to organic electrochemistry—II. Electrochemical hydrogenation of olefinic double bonds , 1981 .

[8]  J. McBreen,et al.  An electrochemically regenerative hydrogen-chlorine energy storage system: electrode kinetics and cell performance , 1980 .

[9]  D. Chin,et al.  A Hydrogen‐Bromine Cell for Energy Storage Applications , 1980 .

[10]  J. McBreen,et al.  Transport Properties of Nafion Membranes in Electrochemically Regenerative Hydrogen/Halogen Cells , 1979 .

[11]  L. Nuttall Conceptual design of large scale water electrolysis plant using solid polymer electrolyte technology , 1977 .

[12]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[13]  J. Newman,et al.  Theoretical Analysis of Current Distribution in Porous Electrodes , 1962 .