Edge Detection and Ridge Detection with Automatic Scale Selection

When extracting features from image data, the type of information that can be extracted may be strongly dependent on the scales at which the feature detectors are applied. This article presents a systematic methodology for addressing this problem. A mechanism is presented for automatic selection of scale levels when detecting one-dimensional features, such as edges and ridges. A novel concept of a scale-space edge is introduced, defined as a connected set of points in scale-space at which: (i) the gradient magnitude assumes a local maximum in the gradient direction, and (ii) a normalized measure of the strength of the edge response is locally maximal over scales. An important property of this definition is that it allows the scale levels to vary along the edge. Two specific measures of edge strength are analysed in detail. It is shown that by expressing these in terms of /spl gamma/-normalized derivatives, an immediate consequence of this definition is that fine scales are selected for sharp edges (so as to reduce the shape distortions due to scale-space smoothing), whereas coarse scales are selected for diffuse edges, such that an edge model constitutes a valid abstraction of the intensity profile across the edge. With slight modifications, this idea can be used for formulating a ridge detector with automatic scale selection, having the characteristic property that the selected scales on a scale-space ridge instead reflect the width of the ridge.

[1]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[2]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[3]  D Marr,et al.  Early processing of visual information. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[5]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[7]  Robert M. Haralick,et al.  Ridges and valleys on digital images , 1983, Comput. Vis. Graph. Image Process..

[8]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[11]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Fredrik Bergholm,et al.  Edge Focusing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[17]  Axel Korn,et al.  Toward a Symbolic Representation of Intensity Changes in Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Tony Lindeberg,et al.  Discrete Scale-Space Theory and the Scale-Space Primal Sketch , 1991 .

[22]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[26]  Gabriella Sanniti di Baja,et al.  Ridge points in Euclidean distance maps , 1992, Pattern Recognit. Lett..

[27]  Roland Wilson,et al.  Kernel Designs for Efficient Multiresolution Edge Detection and Orientation Estimation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ramesh C. Jain,et al.  Reasoning About Edges in Scale Space , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Karl Rohr,et al.  Modelling and identification of characteristic intensity variations , 1992, Image Vis. Comput..

[30]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Alexis Gourdon,et al.  The Marching lines algorithm : new results and proofs , 1993 .

[32]  John M. Gauch,et al.  Multiresolution Analysis of Ridges and Valleys in Grey-Scale Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Tony Lindeberg,et al.  Scale selection for differential operators , 1994 .

[34]  Alan Liu,et al.  MuItiscale medial analysis of medical images , 1994, Image Vis. Comput..

[35]  Rachid Deriche,et al.  Extraction of the zero-crossings of the curvature derivatives in volumic 3D medical images: a multi-scale approach , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Andrea J. van Doorn,et al.  Two-plus-one-dimensional differential geometry , 1994, Pattern Recognition Letters.

[37]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[38]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[39]  Guido Gerig,et al.  Multiscale detection of curvilinear structures in 2-D and 3-D image data , 1995, Proceedings of IEEE International Conference on Computer Vision.

[40]  Stephen M. Pizer,et al.  Object representation by cores: Identifying and representing primitive spatial regions , 1995, Vision Research.

[41]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[42]  Tony Lindeberg,et al.  Direct estimation of affine image deformations using visual front-end operations with automatic scale selection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[43]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.