Evaluating Data Encryption Effects on the Resilience of an Artificial Neural Network
暂无分享,去创建一个
Riccardo Cantoro | Matteo Sonza Reorda | Emanuele Valea | Marcello Traiola | Nikolaos I. Deligiannis | M. Reorda | Marcello Traiola | R. Cantoro | E. Valea | N. I. Deligiannis
[1] Wonyong Sung,et al. Resiliency of Deep Neural Networks under Quantization , 2015, ArXiv.
[2] Riccardo Cantoro,et al. Evaluating the Code Encryption Effects on Memory Fault Resilience , 2020, 2020 IEEE Latin-American Test Symposium (LATS).
[3] Burton S. Kaliski,et al. PKCS #7: Cryptographic Message Syntax Version 1.5 , 1998, RFC.
[4] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[5] Pedro Reviriego,et al. A Scheme to Improve the Intrinsic Error Detection of the Instruction Set Architecture , 2017, IEEE Computer Architecture Letters.
[6] Fan Zhang,et al. Stealing Machine Learning Models via Prediction APIs , 2016, USENIX Security Symposium.
[7] Bernard Girau,et al. Fault and Error Tolerance in Neural Networks: A Review , 2017, IEEE Access.
[8] Sparsh Mittal,et al. A survey of FPGA-based accelerators for convolutional neural networks , 2018, Neural Computing and Applications.
[9] Guanpeng Li,et al. Understanding Error Propagation in Deep Learning Neural Network (DNN) Accelerators and Applications , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.
[10] Stefan Katzenbeisser,et al. Security in Autonomous Systems , 2019, 2019 IEEE European Test Symposium (ETS).
[11] Alberto Bosio,et al. A Reliability Analysis of a Deep Neural Network , 2019, 2019 IEEE Latin American Test Symposium (LATS).