A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon

In this work we have undertaken a comparison of several previously reported computer codes which solve the semiclassical Boltzmann equation for electron transport in silicon. Most of the codes are based on the Monte Carlo particle technique, and have been used here to calculate a relatively simple set of transport characteristics, such as the average electron energy. The results have been contributed by researchers from Japan, Europe, and the United States, and the results were subsequently collected by an independent observer. Although the computed data vary widely, depending on the models and input parameters which are used, they provide for the first time a quantitative (though not comprehensive) comparison of Boltzmann Equation solutions. >

[1]  F. Seitz On the Mobility of Electrons in Pure Non-Polar Insulators , 1948 .

[2]  J. Bardeen,et al.  Energy Bands and Mobilities in Monatomic Semiconductors , 1950 .

[3]  W. Harrison Scattering of Electrons by Lattice Vibrations in Nonpolar Crystals , 1956 .

[4]  C. Herring,et al.  Temperature Dependence of the Piezoresistance of High-Purity Silicon and Germanium , 1957 .

[5]  E. Conwell High field transport in semiconductors , 1967 .

[6]  G. Baym Lectures On Quantum Mechanics , 1969 .

[7]  C. Jacoboni,et al.  Electron drift velocity in silicon , 1975 .

[8]  C. Jacoboni,et al.  Effects of band non-parabolicity on electron drift velocity in silicon above room temperature , 1975 .

[9]  P. J. Price,et al.  Monte Carlo calculations on hot electron energy tails , 1977 .

[10]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[11]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[12]  K. Hess,et al.  Impact ionization of electrons in silicon (steady state) , 1983 .

[13]  M. Charef,et al.  Monte Carlo study of two-dimensional electron gas transport in Si-MOS devices , 1985 .

[14]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[15]  M. Mouis Étude théorique du fonctionnement des dispositifs à effet de champ haute mobilité à hétérojonction , 1988 .

[16]  B. Riccò,et al.  A many-band silicon model for hot-electron transport at high energies , 1989 .

[17]  S. Selberherr,et al.  Coupling of Monte Carlo and drift diffusion method with applications to metal oxide semiconductor field effect transistors , 1990 .

[18]  Takahiro Iizuka,et al.  Carrier transport simulator for silicon based on carrier distribution function evolutions , 1990 .

[19]  B. Riccò,et al.  Efficient non-local modeling of the electron energy distribution in sub-micron MOSFETs , 1990, International Technical Digest on Electron Devices.

[20]  W. Hansch,et al.  A novel approach for including band‐structure effects in a Monte Carlo simulation of electron transport in silicon , 1991 .

[21]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[22]  N. Sano,et al.  Monte Carlo Analysis of Hot Electron Transport and Impact Ionization in Silicon , 1991 .

[23]  B. Meinerzhagen,et al.  Evaluation of impact ionization modeling in the framework of hydrodynamic equations , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[24]  R. Brunetti,et al.  An improved impact‐ionization model for high‐energy electron transport in Si with Monte Carlo simulation , 1991 .

[25]  Bude,et al.  Impact ionization in semiconductors: Effects of high electric fields and high scattering rates. , 1992, Physical review. B, Condensed matter.

[26]  J. Bude,et al.  Monte Carlo simulation of hot electron transport in Si using a unified pseudopotential description of the crystal , 1992 .

[27]  Carrier transport analysis with Monte Carlo simulation including new simplified band structure , 1992 .

[28]  Sano,et al.  Impact-ionization theory consistent with a realistic band structure of silicon. , 1992, Physical review. B, Condensed matter.

[29]  N. Goldsman,et al.  Calculation of impact ionization coefficients with a third‐order Legendre polynomial expansion of the distribution function , 1992 .

[30]  K. Taniguchi,et al.  Adjustable Parameter Free Monte Carlo Siniulation For Electron Transport In Silicon Including Full Band Structure , 1993, [Proceedings] 1993 International Workshop on VLSI Process and Device Modeling (1993 VPAD).

[31]  A. Tasch,et al.  Simulation program suitable for hot carrier studies: An efficient multiband Monte Carlo model using both full and analytic band structure description for silicon , 1993 .

[32]  R. Dutton,et al.  An Efficient Impact Ionization Model For Silicon Monte Carlo Simulation , 1993, [Proceedings] 1993 International Workshop on VLSI Process and Device Modeling (1993 VPAD).

[33]  C. Fiegna,et al.  Modeling of high-energy electrons in MOS devices at the microscopic level , 1993 .

[34]  Bruno Riccò,et al.  A numerical method to compute isotropic band models from anisotropic semiconductor band structures , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[35]  F. Mcfeely,et al.  Impact ionization in silicon , 1993 .