A POMDP approach to Affective Dialogue Modeling

We propose a novel approach to developing a dialogue model that is able to take into account some aspects of the user's affective state and to act appropriately. Our dialogue model uses a Partially Observable Markov Decision Process approach with observations composed of the observed user's affective state and action. A simple example of route navigation is explained to clarify our approach. The preliminary results showed that: (1) the expected return of the optimal dialogue strategy depends on the correlation between the user's affective state & the user's action and (2) the POMDP dialogue strategy outperforms five other dialogue strategies (the random, three handcrafted and greedy action selection strategies).