Untersuchung atomarer Fehlstellen in verformtem Kupfer mit Hilfe des elektrischen Widerstandes

Das Erholungsverhalten des elektrischen Widerstandes von plastisch verformtem Kupfer (Reinheitsgrade: 99,99%, 99,999%) wird im Temperaturgebiet zwischen -40 und 250 °C untersucht. In diesem Temperaturgebiet werden drei Erholungsprozesse beobachtet. Die erste Erholungsstufe (Stufe III, Aktivierungsenergie (0,64 ± 0,04) eV) wird auf die Rekombination von Zwischengitteratomen mit den (beim Verformen in etwa gleicher Konzentration entstandenen) Leerstellen zuruckgefuhrt. Die daran anschliesende Stufe IV (Aktivierungsenergie (1,05 ± 0,05) eV) wird, auf Grund der Ubereinstimmung ihrer Aktivierungsenergie mit der nach Abschrecken in diesem Temperaturgebiet gefundenen, dem Ausheilen einzelner Leerstellen zugeschrieben. Bei der dritten der beobachteten Erholungsstufen handelt es sich um die wohlbekannte Stufe V. The recovery of the electrical resistance of cold rolled copper (purity 99.99% and 99.999%) was studied in the temperature range −40 to 250 °C. Three recovery processes were observed in this temperature range. The first recovery stage (stage III, activation energy (0.64 ± 0.04) eV) is attributed to the recombination of interstitial atoms with vacancies (produced in nearly equal concentration during deformation). The subsequent stage IV (activation energy (1.05 ± 0.05) eV) is ascribed to the annealing of single vacancies, since the measured activation energy agrees with that obtained in the same temperature range after quenching. The third of the observed recovery stages is the well-known stage V.

[1]  W. Schilling,et al.  The Influence of the Initial Defect Concentration on the Annealing of Low-Temperature Irradiated Metals , 1964, 1964.

[2]  A. Seeger Energies of formation and migration of monovacancies in copper , 1964 .

[3]  A. Seeger INTERSTITIAL ATOMS IN NOBLE METALS , 1964 .

[4]  H. Dawson Recovery of the electrical resistivity of copper, silver and gold after small plastic deformations at − 195°C , 1964 .

[5]  E. C. Jones,et al.  STAGE I RECOVERY SPECTRUM OF PURE COPPER IRRADIATED WITH ELECTRONS OVER THE RANGE 1.25 TO 3.25 Mev , 1964 .

[6]  J. Koehler,et al.  EXPERIMENTS ON STAGE III ANNEALING IN THE NOBLE METALS , 1964 .

[7]  W. Schilling,et al.  Durch Zwischengitteratome bedingte Relaxationserscheinungen in kaltverformtem Kupfer , 1963 .

[8]  D. Brandon,et al.  THE PRODUCTION OF INTERSTITIAL POINT DEFECTS BY LOW ENERGY ION BOMBARDMENT , 1963 .

[9]  M. Rühle,et al.  Migration energy and binding energy of di-vacancies in copper , 1963 .

[10]  D. Vérel Recovery of the resistivity of copper cold worked at low temperatures , 1963 .

[11]  S. Yamaguchi Optical Properties of Silver Films–Direct Observation of the \(\textIm\) 1/ε-Spectrum , 1963 .

[12]  A. V. D. Beukel Release of stored energy during low temperature annealing of some cold worked metals , 1963 .

[13]  T. Dote,et al.  Some experiments on probe characteristics in drifting plasma , 1963 .

[14]  A. Seeger,et al.  Untersuchung atomarer Fehlstellen in verformtem und abgeschrecktem Silber , 1962, 1962.

[15]  D. Schumacher,et al.  Point Defects in Gold , 1962, 1962.

[16]  J. Koehler,et al.  LOW-TEMPERATURE ANNEALING SPECTRUM OF ELECTRON-IRRADIATED GOLD AND CADMIUM , 1962 .

[17]  A. Seeger,et al.  Zwischengitteratome in kubisch-flächenzentrierten kristallen, insbesondere in kupfer , 1962 .

[18]  V. Paré,et al.  Temperature dependence from 250°K to 370°K of dislocation pinning in copper single crystals by radiation defects , 1962 .

[19]  D. Schumacher,et al.  Untersuchung atomarer Fehlstellen in verformtem und abgeschrecktem Nickel , 1962 .

[20]  O. Buck Verformung und elektrischer Widerstand von Kupfer-Einkristallen bei tiefsten Temperaturen† , 1962 .

[21]  R. O Williams,et al.  The stored energy in deformed copper: The effect of grain size and silver content , 1961 .

[22]  D. G. Martin The influence of impurity atoms on the annealing kinetics of neutron irradiated copper. , 1961 .

[23]  A. V. D. Beukel Stored energy measurements on copper and nickel cold worked at liquid nitrogen temperature , 1961 .

[24]  D. Schumacher,et al.  Notizen: Untersuchungen atomarer Fehlstellen in Kupfer, Silber und Gold mit Hilfe des elektrischen Widerstands , 1961 .

[25]  R. Hasiguti Impurity Trapped Interstitials and the Low Temperature Annealing Stages of Irradiated Copper , 1960 .

[26]  J. Brinkman,et al.  THERMALLY ACTIVATED POINT DEFECT MIGRATION IN COPPER , 1960 .

[27]  A. Sosin,et al.  Effect of Electron Irradiation and Subsequent Thermal Treatment on Young's Modulus of Copper , 1960 .

[28]  A. Granato,et al.  Stored Energy Release Below 80°K in Deuteron-Irradiated Copper , 1961 .

[29]  R. B. Smith,et al.  Recovery of Electron-Irradiated Copper. I. Close Pair Recovery , 1959 .

[30]  R. B. Smith,et al.  RECOVERY OF ELECTRON-IRRADIATED COPPER. II. INTERSTITIAL MIGRATION , 1959 .

[31]  D. Kuhlmann-wilsdorf,et al.  Quenched-in vacancies in noble metals—I theory of decay , 1959 .

[32]  A. Sosin,et al.  Stored Energy Release in Copper Following Electron Irradiation below 20°K , 1959 .

[33]  M. Loretto,et al.  The influence of grain size on the stored energy and mechanical properties of copper , 1958 .

[34]  C. W. Berghout The influence of elastic strains on the recovery of cold-worked copper☆ , 1958 .

[35]  A. Granato,et al.  Recovery of damping and modulus changes following plastic deformation , 1958 .

[36]  M. Makin Hardening of copper single crystals irradiated at — 195°C , 1958 .

[37]  A. Sosin,et al.  Recovery of Electrical Resistivity of Cu, Au, and Ni Following Cold Work at 4°K , 1958 .

[38]  J. Koehler,et al.  Isothermal Annealing below 60°K of Deuteron Irradiated Noble Metals , 1958 .

[39]  T. Noggle,et al.  Low‐Temperature Reactor Irradiation Effects in Metals , 1957 .

[40]  C. Meechan Annealing of Cold‐Worked Copper by Electron Irradiation , 1957 .

[41]  J. Koehler,et al.  Low Temperature Release of Stored Energy in Cold Worked Copper , 1956 .

[42]  J. Brinkman,et al.  Electrical Resistivity Study of Lattice Defects Introduced in Copper by 1.25-Mev Electron Irradiation at 80°K , 1956 .

[43]  W. Augustyniak,et al.  Neutron Irradiation Effects in Cu and Al at 80°K , 1955 .

[44]  W. B. Pearson Resistance and Thermoelectric Measurements of Cold-Worked Copper and the Resistance Minimum at Low Temperatures , 1955 .

[45]  H. Cooper,et al.  IRRADIATION EFFECTS IN Cu, Ag, AND Au NEAR 10 K , 1955 .

[46]  A. Overhauser STORED ENERGY MEASUREMENTS IN IRRADIATED COPPER , 1954 .

[47]  H. Cooper,et al.  RESISTIVITY CHANGES IN COPPER, SILVER, AND GOLD PRODUCED BY DEUTERON IRRADIATION NEAR 10 K , 1954 .

[48]  J. Brinkman,et al.  Interstitial and vacancy migration in Cu3Au and copper , 1954 .

[49]  R. Eggleston The annealing of copper after radiation damage at low temperatures , 1953 .

[50]  A. Overhauser Isothermal Annealing Effects in Irradiated Copper , 1953 .

[51]  A. Smith XLVIII. The effect of small amounts of cold-work on Young's Modulus of copper , 1953 .

[52]  R. Eggleston Cold Work Studies on Copper at Low Temperatures , 1952 .

[53]  R. H. Kropschot,et al.  A Study of the Annealing Kinetics in Cold Worked Copper , 1952 .

[54]  J. Manintveld Recovery of the Resistivity of Metals after Cold-Working , 1952, Nature.

[55]  G. Tammann,et al.  Die Erholung des elektrischen Widerstandes und der Härte von Kupfer, Silber und Gold, sowie von Platin und Palladium von den Folgen der Kaltbearbeitung , 1933 .