Geodesic Object Proposals

We present an approach for identifying a set of candidate objects in a given image. This set of candidates can be used for object recognition, segmentation, and other object-based image parsing tasks. To generate the proposals, we identify critical level sets in geodesic distance transforms computed for seeds placed in the image. The seeds are placed by specially trained classifiers that are optimized to discover objects. Experiments demonstrate that the presented approach achieves significantly higher accuracy than alternative approaches, at a fraction of the computational cost.

[1]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  P. Toivanen New geodesic distance transforms for grayscale images , 2002 .

[3]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[4]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Guillermo Sapiro,et al.  O(N) implementation of the fast marching algorithm , 2006, Journal of Computational Physics.

[6]  Alexei A. Efros,et al.  Improving Spatial Support for Objects via Multiple Segmentations , 2007, BMVC.

[7]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Guillermo Sapiro,et al.  Geodesic Matting: A Framework for Fast Interactive Image and Video Segmentation and Matting , 2009, International Journal of Computer Vision.

[9]  Joseph J. Lim,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[11]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Patrick Pérez,et al.  Geodesic image and video editing , 2010, TOGS.

[13]  Brian L. Price,et al.  Geodesic graph cut for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Cristian Sminchisescu,et al.  Object Recognition by Sequential Figure-Ground Ranking , 2011, International Journal of Computer Vision.

[15]  Cristian Sminchisescu,et al.  Semantic Segmentation with Second-Order Pooling , 2012, ECCV.

[16]  Thomas Deselaers,et al.  Measuring the Objectness of Image Windows , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Matthieu Guillaumin,et al.  Segmentation Propagation in ImageNet , 2012, ECCV.

[18]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Cristian Sminchisescu,et al.  CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Koen E. A. van de Sande,et al.  Selective Search for Object Recognition , 2013, International Journal of Computer Vision.

[21]  Santiago Manen,et al.  Prime Object Proposals with Randomized Prim's Algorithm , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Joseph J. Lim,et al.  Sketch Tokens: A Learned Mid-level Representation for Contour and Object Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  C. Lawrence Zitnick,et al.  Structured Forests for Fast Edge Detection , 2013, 2013 IEEE International Conference on Computer Vision.

[24]  Derek Hoiem,et al.  Category-Independent Object Proposals with Diverse Ranking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.