Traveling waves in compressible elastic rods

We determine all weak traveling wave solutions of a model for nonlinear dispersive waves in cylindrical compressible hyperelastic rods. Besides the previously known smooth, peaked, and cusped solutions, the equation is shown to admit compactons, stumpons, and fractal-like waves.

[1]  A. Awane,et al.  k‐symplectic structures , 1992 .

[2]  Jonatan Lenells,et al.  Stability of periodic peakons , 2004 .

[3]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[4]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[5]  L. R. Scott,et al.  Numerical schemes for a model for nonlinear dispersive waves , 1985 .

[6]  J. Lenells Traveling wave solutions of the Camassa-Holm equation , 2005 .

[7]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[8]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  D. H. Sattinger,et al.  Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy , 1998, solv-int/9901007.

[10]  W. Strauss,et al.  Stability of peakons , 2000 .

[11]  W. Strauss,et al.  Stability of a class of solitary waves in compressible elastic rods , 2000 .

[12]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  L. R. Scott,et al.  An evaluation of a model equation for water waves , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[15]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[17]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[18]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[19]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[20]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[21]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[22]  Adrian Constantin,et al.  Stability of the Camassa-Holm solitons , 2002, J. Nonlinear Sci..

[23]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[24]  H. Kalisch,et al.  Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .

[25]  Jonatan Lenells,et al.  A Variational Approach to the Stability of Periodic Peakons , 2004 .

[26]  H. Dai,et al.  Solitary shock waves and other travelling waves in a general compressible hyperelastic rod , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  A. Constantin,et al.  TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems , 2002 .

[28]  J. Lenells The Scattering Approach for the Camassa–Holm equation , 2002, nlin/0306021.