Cyclic performance of repaired concrete-filled steel tubular columns after exposure to fire

This paper provides new test data of cyclic behavior of repaired concrete-filled steel tubular (CFST) columns after exposure to fire, the fire-damaged CFST columns being strengthened by wrapping the original columns by concrete and a thin-walled steel tube. The test parameters included the cross-section type (circular, square and rectangular), and the axial load level (0, 0.3, 0.6). It was found that all the test specimens behaved in a ductile manner and testing proceeded in a smooth and controlled way. Based on the experiment measurements, the ultimate lateral strength, flexural stiffness, dissipated energy and ductility of the columns are analyzed and compared. The test results indicate that the ultimate lateral strength and flexural stiffness of concrete-filled hollow structural columns decrease after exposure to fire, however, the ductility of the columns was not adversely affected due to the fire exposure. The test results also indicate that the strength and stiffness of the fire-damaged columns can be restored over the original level of the specimens.