Influence of pyrene-labeling on fluid lipid membranes.

We elucidate the influence of pyrene-labeled phospholipids on the structural properties of a fluid dipalmitoylphosphatidylcholine lipid membrane. To this end, we employ extensive atomic-scale molecular dynamics simulations with varying concentrations of pyrene-linked lipids. We find pyrene labeling to perturb the membrane structure significantly in the vicinity of the probe, the correlation length in the bilayer plane being about 1.0-1.5 nm. The local perturbations lead to enhanced ordering and packing of lipid acyl chains located in the vicinity of the probe. Surprisingly, this holds true not only for lipids that reside in the same leaflet as the pyrene-labeled probe but also for lipids in the opposite monolayer. The latter is due to substantial interdigitation of the pyrene moiety into the opposite leaflet, suggesting that occasional excimer formation may take place for probes in different leaflets. As a related issue, we also discuss the location and conformational orientation of the pyrene moieties. In particular, the orientational distribution of pyrene turns out to be more broad and diverse than the distribution of the corresponding acyl tails of nonlabeled lipids.