Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities

[1]  Juan Luis Vázquez,et al.  Asymptotic behaviour for the porous medium equation posed in the whole space , 2003 .

[2]  Giuseppe Toscani,et al.  Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation , 2002 .

[3]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[4]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[5]  Felix Otto,et al.  Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: uniqueness of weak solutions , 2000 .

[6]  René Pinnau,et al.  The Linearized Transient Quantum Drift Diffusion Model — Stability of Stationary States , 2000 .

[7]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .

[8]  Ansgar Jüngel,et al.  Numerical Discretization of Energy-Transport Models for Semiconductors with Nonparabolic Band Structure , 2000, SIAM J. Sci. Comput..

[9]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .

[10]  Giuseppe Toscani,et al.  Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .

[11]  Tim G. Myers,et al.  Thin Films with High Surface Tension , 1998, SIAM Rev..

[12]  P. Degond,et al.  A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects , 1997 .

[13]  Francisco Bernis,et al.  Source-type solutions to thin-film equations in higher dimensions , 1997, European Journal of Applied Mathematics.

[14]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[15]  Giuseppe Toscani,et al.  Sur l'inégalité logarithmique de Sobolev , 1997 .

[16]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[17]  F. Abergel,et al.  Study of a nonlinear elliptic-parabolic equation with measures as data: existence regularity and behaviour near a singularity , 1996 .

[18]  Mary C. Pugh,et al.  The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions , 1996 .

[19]  Francisco Bernis,et al.  Finite speed of propagation and continuity of the interface for thin viscous flows , 1996, Advances in Differential Equations.

[20]  M. Bertsch,et al.  Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .

[21]  J. Kacur,et al.  Local existence of general nonlinear parabolic systems , 1995 .

[22]  A. Unterreiter Vacuum and non‐vacuum solutions of the quasi‐hydrodynamic semiconductor model in thermal equilibrium , 1995 .

[23]  A. Unterreiter,et al.  The thermal equilibrium state of semiconductor devices , 1994 .

[24]  Pavel Bleher,et al.  Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .

[25]  J. Zhao The Asymptotic Behavior of Solutions of a Quasilinear Degenerate Parabolic Equation , 1993 .

[26]  Francisco Bernis,et al.  Source type solutions of a fourth order nonlinear degenerate parabolic equation , 1992 .

[27]  G. Francsics The porous medium equation: the superslow diffusion case , 1988 .

[28]  A. S. Kalashnikov Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations , 1987 .

[29]  D. Hilhorst,et al.  A sensity dependent diffussion equation in population dynamics: stabilization to equilibrium , 1986 .

[30]  James Ralston,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. II , 1984 .

[31]  William I. Newman,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. I , 1984 .

[32]  P. Roberts,et al.  A THERMODYNAMICALLY CONSISTENT MODEL OF A MUSHY ZONE , 1983 .

[33]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[34]  Emmanuele DiBenedetto,et al.  Continuity of Weak Solutions to a General Porous Media Equation. , 1981 .

[35]  Avner Friedman,et al.  The asymptotic behavior of gas in an -dimensional porous medium , 1980 .

[36]  S. Kamenomostskaya Similar solutions and the asymptotics of filtration equations , 1976 .

[37]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[38]  S. Kamenomostskaya,et al.  The asymptotic behaviour of the solution of the filtration equation , 1973 .

[39]  Solomon Kullback,et al.  Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.

[40]  W. Rudin Real and complex analysis , 1968 .

[41]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[42]  Ansgar Jüngel,et al.  Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..

[43]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[44]  J. Dolbeault,et al.  Generalized Sobolev Inequalities and Asymptotic Behaviour in Fast Diffusion and Porous Medium Problems , 1999 .

[45]  A. Bertozzi THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .

[46]  A. Jüngel A Nonlinear Drift ‐ Diffusion System with Electric Convection Arising in Electrophoretic and Semiconductor Modeling , 1997 .

[47]  M. Ledoux,et al.  Sobolev inequalities in disguise , 1995 .

[48]  J. Vázquez,et al.  Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem , 1994 .

[49]  J. Vázquez,et al.  Asymptotic behaviour for an equation of superslow diffusion in a bounded domain , 1994 .

[50]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[51]  Anne Unterreiner,et al.  Vacuum solutions of a stationary drift-diffusion model , 1993 .

[52]  E. Carlen,et al.  Sharp constant in Nash's inequality , 1993 .

[53]  J. Vázquez An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .

[54]  R. Racke Lectures on nonlinear evolution equations , 1992 .

[55]  J. Kacur On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spaces I , 1990 .

[56]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[57]  Noel F. Smyth,et al.  High-Order Nonlinear Diffusion , 1988 .

[58]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[59]  Jozef Kačur,et al.  Method of rothe in evolution equations , 1986 .

[60]  J. Lions,et al.  Estimation uniforme de la solution de ut=Δφ(u) et caractérisation de l'effet régularisant , 1985 .

[61]  Z. Deyl Electrophoresis : a survey of techniques and applications , 1979 .

[62]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[63]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.