Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities
暂无分享,去创建一个
Ansgar Jüngel | Giuseppe Toscani | José A. Carrillo | Peter A. Markowich | J. Carrillo | P. Markowich | G. Toscani | A. Unterreiter | A. Jüngel | Andreas Unterreiter
[1] Juan Luis Vázquez,et al. Asymptotic behaviour for the porous medium equation posed in the whole space , 2003 .
[2] Giuseppe Toscani,et al. Long-Time Asymptotics for Strong Solutions¶of the Thin Film Equation , 2002 .
[3] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[4] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[5] Felix Otto,et al. Solute transport in porous media with equilibrium and nonequilibrium multiple-site adsorption: uniqueness of weak solutions , 2000 .
[6] René Pinnau,et al. The Linearized Transient Quantum Drift Diffusion Model — Stability of Stationary States , 2000 .
[7] Giuseppe Toscani,et al. On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .
[8] Ansgar Jüngel,et al. Numerical Discretization of Energy-Transport Models for Semiconductors with Nonparabolic Band Structure , 2000, SIAM J. Sci. Comput..
[9] Cédric Villani,et al. On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .
[10] Giuseppe Toscani,et al. Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .
[11] Tim G. Myers,et al. Thin Films with High Surface Tension , 1998, SIAM Rev..
[12] P. Degond,et al. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects , 1997 .
[13] Francisco Bernis,et al. Source-type solutions to thin-film equations in higher dimensions , 1997, European Journal of Applied Mathematics.
[14] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[15] Giuseppe Toscani,et al. Sur l'inégalité logarithmique de Sobolev , 1997 .
[16] Felix Otto,et al. L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .
[17] F. Abergel,et al. Study of a nonlinear elliptic-parabolic equation with measures as data: existence regularity and behaviour near a singularity , 1996 .
[18] Mary C. Pugh,et al. The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions , 1996 .
[19] Francisco Bernis,et al. Finite speed of propagation and continuity of the interface for thin viscous flows , 1996, Advances in Differential Equations.
[20] M. Bertsch,et al. Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation , 1995 .
[21] J. Kacur,et al. Local existence of general nonlinear parabolic systems , 1995 .
[22] A. Unterreiter. Vacuum and non‐vacuum solutions of the quasi‐hydrodynamic semiconductor model in thermal equilibrium , 1995 .
[23] A. Unterreiter,et al. The thermal equilibrium state of semiconductor devices , 1994 .
[24] Pavel Bleher,et al. Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .
[25] J. Zhao. The Asymptotic Behavior of Solutions of a Quasilinear Degenerate Parabolic Equation , 1993 .
[26] Francisco Bernis,et al. Source type solutions of a fourth order nonlinear degenerate parabolic equation , 1992 .
[27] G. Francsics. The porous medium equation: the superslow diffusion case , 1988 .
[28] A. S. Kalashnikov. Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations , 1987 .
[29] D. Hilhorst,et al. A sensity dependent diffussion equation in population dynamics: stabilization to equilibrium , 1986 .
[30] James Ralston,et al. A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. II , 1984 .
[31] William I. Newman,et al. A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. I , 1984 .
[32] P. Roberts,et al. A THERMODYNAMICALLY CONSISTENT MODEL OF A MUSHY ZONE , 1983 .
[33] Stephan Luckhaus,et al. Quasilinear elliptic-parabolic differential equations , 1983 .
[34] Emmanuele DiBenedetto,et al. Continuity of Weak Solutions to a General Porous Media Equation. , 1981 .
[35] Avner Friedman,et al. The asymptotic behavior of gas in an -dimensional porous medium , 1980 .
[36] S. Kamenomostskaya. Similar solutions and the asymptotics of filtration equations , 1976 .
[37] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[38] S. Kamenomostskaya,et al. The asymptotic behaviour of the solution of the filtration equation , 1973 .
[39] Solomon Kullback,et al. Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.
[40] W. Rudin. Real and complex analysis , 1968 .
[41] J. Nash. Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .
[42] Ansgar Jüngel,et al. Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..
[43] J. A. Carrillo,et al. Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .
[44] J. Dolbeault,et al. Generalized Sobolev Inequalities and Asymptotic Behaviour in Fast Diffusion and Porous Medium Problems , 1999 .
[45] A. Bertozzi. THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS , 1998 .
[46] A. Jüngel. A Nonlinear Drift ‐ Diffusion System with Electric Convection Arising in Electrophoretic and Semiconductor Modeling , 1997 .
[47] M. Ledoux,et al. Sobolev inequalities in disguise , 1995 .
[48] J. Vázquez,et al. Asymptotic behaviour for an equation of superslow diffusion. The Cauchy problem , 1994 .
[49] J. Vázquez,et al. Asymptotic behaviour for an equation of superslow diffusion in a bounded domain , 1994 .
[50] R. Illner,et al. The mathematical theory of dilute gases , 1994 .
[51] Anne Unterreiner,et al. Vacuum solutions of a stationary drift-diffusion model , 1993 .
[52] E. Carlen,et al. Sharp constant in Nash's inequality , 1993 .
[53] J. Vázquez. An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .
[54] R. Racke. Lectures on nonlinear evolution equations , 1992 .
[55] J. Kacur. On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spaces I , 1990 .
[56] A. Friedman,et al. Higher order nonlinear degenerate parabolic equations , 1990 .
[57] Noel F. Smyth,et al. High-Order Nonlinear Diffusion , 1988 .
[58] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[59] Jozef Kačur,et al. Method of rothe in evolution equations , 1986 .
[60] J. Lions,et al. Estimation uniforme de la solution de ut=Δφ(u) et caractérisation de l'effet régularisant , 1985 .
[61] Z. Deyl. Electrophoresis : a survey of techniques and applications , 1979 .
[62] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[63] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.