On the smallest singular value of multivariate Vandermonde matrices with clustered nodes

We prove lower bounds for the smallest singular value of rectangular, multivariate Vandermonde matrices with nodes on the complex unit circle. The nodes are ``off the grid'', groups of nodes cluster, and the studied minimal singular value is bounded below by the product of inverted distances of a node to all other nodes in the specific cluster. By providing also upper bounds for the smallest singular value, this completely settles the univariate case and pairs of nodes in the multivariate case, both including reasonable sharp constants. For larger clusters, we show that the smallest singular value depends also on the geometric configuration within a cluster.

[1]  Laurent Demanet,et al.  The recoverability limit for superresolution via sparsity , 2015, ArXiv.

[2]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  Stefan Kunis,et al.  Stability Results for Scattered Data Interpolation by Trigonometric Polynomials , 2007, SIAM J. Sci. Comput..

[4]  Stefan Kunis,et al.  On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes , 2018, Numerical Algorithms.

[5]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[6]  Helmut Bölcskei,et al.  Vandermonde Matrices with Nodes in the Unit Disk and the Large Sieve , 2017, Applied and Computational Harmonic Analysis.

[7]  Laurent Demanet,et al.  Stability of partial Fourier matrices with clustered nodes , 2018, ArXiv.

[8]  Laurent Demanet,et al.  Conditioning of Partial Nonuniform Fourier Matrices with Clustered Nodes , 2018, SIAM J. Matrix Anal. Appl..

[9]  D. Donoho Superresolution via sparsity constraints , 1992 .

[10]  Dmitry Batenkov,et al.  Super-resolution of near-colliding point sources , 2019, Information and Inference: A Journal of the IMA.

[11]  Emmanuel J. Candès,et al.  Super-Resolution of Positive Sources: The Discrete Setup , 2015, SIAM J. Imaging Sci..

[12]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  Wenjing Liao,et al.  Super-Resolution Limit of the ESPRIT Algorithm , 2019, IEEE Transactions on Information Theory.

[14]  Bero Roos,et al.  Maximal probabilities of convolution powers of discrete uniform distributions , 2007, 0706.0843.

[15]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[16]  Ankur Moitra,et al.  Super-resolution, Extremal Functions and the Condition Number of Vandermonde Matrices , 2014, STOC.

[17]  D. Potts,et al.  Error Estimates for the ESPRIT Algorithm , 2017 .

[18]  Fermín S. Viloche Bazán,et al.  Conditioning of Rectangular Vandermonde Matrices with Nodes in the Unit Disk , 1999, SIAM J. Matrix Anal. Appl..

[19]  Andrey Akinshin,et al.  Error amplification in solving Prony system with near-colliding nodes , 2017 .

[20]  Stefan Kunis,et al.  Prony’s Method Under an Almost Sharp Multivariate Ingham Inequality , 2017 .

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Weilin Li,et al.  Stable super-resolution limit and smallest singular value of restricted Fourier matrices , 2017, Applied and Computational Harmonic Analysis.

[23]  Benedikt Diederichs Well-Posedness of Sparse Frequency Estimation , 2019 .