Snap rounding line segments efficiently in two and three dimensions

We study the problem of robustly rounding a set S of n line segments in R2 using the snap rounding paradigm. In this paradigm each pixel containing an endpoint or intersection point is called “hot,” and all segments intersecting a hot pixel are re-routed to pass through its center. We show that a snap-rounded approximation to the arrangement defined by S can be built in an output-sensitive fashion, and that this can be done without first determining all the intersecting pairs of segments in S. Specifically, we give a deterministic plan~sweep algorithm running in time O(n bgn -F&H Ihl10g ~), where ~ is the set of hot pixela and \hl is the number of segments intersecting a hot pixel h E H. We also give a simple randomized incremental construction whose expected running time matches that of our deterministic algorithm. The complexity of these algorithms is optimal up to polylogarithmic factors. “This research is supported by NSF grant CCR9625289 and by U.S. ARO grsnt DAAH0496-1-O013. tThis rese~ch is supported by NSF grant CCR9623851 and US Army MUFU grant 5-23542-A. Permission 10make digil; llhd mpits tll’illl tw [ml o~lhis m:lterinl Ibr persomrl or Clossroom me is grnnled tvilllo{ll lid prnvidcrl 1}101Ihe copIcs are not mode nr distrihukd Ibr proli( or conm~L$rci.o I adwrnlngc. Ihc copy ri~l notice. Ihe tillc nl’the puhlicotion :Ind ih da(c ;Ippcilr. aml nn[iw IS given ihal cnpJTighl is h) pcrmissmn ol’lhc ,\(’il. [m. “1’0cnp) olhcn! M,. to rcpuhl ish. 10pnsl on swvers or It>rcdislrilw Ic Io Iisls. requires spwi Iic permission md~or tiec ( “ompttf{rfwndi ( ;wmcrr] 9Xii~.cl:r:m,c Copyrighl I 997 ,AChl 0M79 I-X78-997 ‘(I6,,S.75{1 LEONIDAS J. GUIBASt Dept. of Computer Science

[1]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[2]  KEVIN Q. BROWN Comments on “algorithms for reporting and counting geometric intersections” , 1981, IEEE Transactions on Computers.

[3]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[4]  L. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.

[5]  F. Frances Yao,et al.  Finite-resolution computational geometry , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[6]  John E. Hopcroft,et al.  Towards implementing robust geometric computations , 1988, SCG '88.

[7]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[8]  K. Mulmuley A fast planar partition algorithm: Part I , 1988 .

[9]  M. Iri,et al.  Two Design Principles of Geometric Algorithms in Finite-Precision Arithmetic , 1989 .

[10]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[11]  Victor J. Milenkovic,et al.  Double precision geometry: a general technique for calculating line and segment intersections using rounded arithmetic , 1989, 30th Annual Symposium on Foundations of Computer Science.

[12]  Leonidas J. Guibas,et al.  Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.

[13]  Victor J. Milenkovic,et al.  Numerical stability of algorithms for line arrangements , 1991, SCG '91.

[14]  Kenneth L. Clarkson,et al.  RANDOMIZED GEOMETRIC ALGORITHMS , 1992 .

[15]  Jirí Matousek,et al.  A Tail Estimate for Mulmuley's Segment Intersection Algorithm , 1992, ICALP.

[16]  Demichelis,et al.  Evaluation of the , 1992, Physical review. B, Condensed matter.

[17]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[18]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[19]  Jirí Matousek,et al.  On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..

[20]  Leonidas J. Guibas,et al.  Rounding arrangements dynamically , 1995, SCG '95.

[21]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[22]  Mariette Yvinec,et al.  Evaluation of a new method to compute signs of determinants , 1995, SCG '95.

[23]  Giuseppe Liotta,et al.  Robust Proximity Queries in Implicit Voronoi Diagrams , 1996, CCCG.

[24]  John D. Hobby,et al.  Practical segment intersection with finite precision output , 1999, Comput. Geom..