Determination of [11C]PBR28 Binding Potential in vivo: A First Human TSPO Blocking Study

Positron emission tomography (PET) targeting the 18 kDa translocator protein (TSPO) is used to quantify neuroinflammation. Translocator protein is expressed throughout the brain, and therefore a classical reference region approach cannot be used to estimate binding potential (BP ND ). Here, we used blockade of the TSPO radioligand [11C]PBR28 with the TSPO ligand XBD173, to determine the non-displaceable volume of distribution (V ND ), and hence estimate the BP ND . A total of 26 healthy volunteers, 16 high-affinity binders (HABs) and 10 mixed affinity binders (MABs) underwent a [11C]PBR28 PET scan with arterial sampling. Six of the HABs received oral XBD173 (10 to 90 mg), 2 hours before a repeat scan. In XBD173-dosed subjects, V ND was estimated via the occupancy plot. Values of BP ND for all subjects were calculated using this V ND estimate. Total volume of distribution (V T ) of MABs (2.94 ± 0.31) was lower than V T of HABs (4.33 ± 0.29) (P<0.005). There was dose-dependent occupancy of TSPO by XBD173 (ED50 = 0.34 ± 0.13 mg/kg). The occupancy plot provided a V ND estimate of 1.98 (1.69, 2.26). Based on these V ND estimates, BP ND for HABs is approximately twice that of MABs, consistent with predictions from in vitro data. Our estimates of [11C]PBR28 V ND and hence BP ND in the healthy human brain are consistent with in vitro predictions. XBD173 blockade provides a practical means of estimating V ND for TSPO targeting radioligands.

[1]  Roger N Gunn,et al.  Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  R. Rupprecht,et al.  Variation in binding affinity of the novel anxiolytic XBD173 for the 18 kDa translocator protein in human brain , 2011, Synapse.

[3]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  R N Gunn,et al.  Quantitative analysis of [carbonyl-(11)C]WAY-100635 PET studies. , 2000, Nuclear medicine and biology.

[5]  V. Vladimirov,et al.  Translocator Protein (18 kD) as Target for Anxiolytics Without Benzodiazepine-Like Side Effects , 2009 .

[6]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[7]  D J Brooks,et al.  Microglial activation correlates with severity in Huntington disease , 2006, Neurology.

[8]  Alexander Hammers,et al.  In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease , 2006, Neurobiology of Disease.

[9]  D. Wong,et al.  Column-switching HPLC for the analysis of plasma in PET imaging studies. , 2000, Nuclear medicine and biology.

[10]  Kimberly J. Jenko,et al.  A Genetic Polymorphism for Translocator Protein 18 Kda Affects both in Vitro and in Vivo Radioligand Binding in Human Brain to this Putative Biomarker of Neuroinflammation , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  F. Turkheimer,et al.  Reference and target region modeling of [11C]-(R)-PK11195 brain studies. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Karmen K. Yoder,et al.  Influence of TSPO Genotype on 11C-PBR28 Standardized Uptake Values , 2013, The Journal of Nuclear Medicine.

[13]  Roger N Gunn,et al.  Quantification of the Specific Translocator Protein Signal of 18F-PBR111 in Healthy Humans: A Genetic Polymorphism Effect on In Vivo Binding , 2013, The Journal of Nuclear Medicine.

[14]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Alexander Gerhard,et al.  Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study , 2005, NeuroImage.

[16]  T. Guilarte,et al.  Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. , 2004, Brain : a journal of neurology.

[17]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  Alan A. Wilson,et al.  Translocator Protein (18 kDa) Polymorphism (rs6971) Explains in-vivo Brain Binding Affinity of the PET Radioligand [18F]-FEPPA , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Mark Slifstein,et al.  Measuring Drug Occupancy in the Absence of a Reference Region: The Lassen Plot Re-Visited , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  Sunhee C. Lee,et al.  Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain , 2009, Neuropathology and applied neurobiology.

[21]  Robert B. Innis,et al.  Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation , 2008, NeuroImage.

[22]  Mark Jenkinson,et al.  Imaging dopamine receptors in humans with [11C]-(+)-PHNO: Dissection of D3 signal and anatomy , 2011, NeuroImage.

[23]  R B Banati,et al.  The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. , 2000, Brain : a journal of neurology.