Global pointwise error estimates for uniformly convergent finite element methods for the elliptic boundary layer problem

This paper continues our discussion for the anisotropic model problem −(e2∂2u∂x2 + ∂2∂y2) + a(x,y)u = f(x,y) in [1]. There we constructed a bilinear finite element method on a Shishkin type mesh. The method was shown to be convergent, independent of the small parameter ϵ, in the order of N−2ln2N in the L2-norm, where N2 is the total number of mesh points. In this paper, the method is shown to be convergent, independent of ϵ, in the order of N−2ln3 N in the L∞-norm in the whole computational domain, which explains the uniform convergence phenomena we found in the numerical results in [1]. Another numerical experiment is presented here, which confirms our theoretical analysis. Published by Elsevier Science Ltd.

[1]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[2]  Martin Stynes,et al.  Pointwise Error Estimates for a Streamline Diffusion Scheme on a Shishkin Mesh for a Convection-Diff , 1995 .

[3]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[4]  U MartinStynes A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem , 1997 .

[5]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[6]  I. M. Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion Type , 1998, Computers & Mathematics with Applications.

[7]  Leonid V. Kalachev,et al.  The Boundary Function Method for Singular Perturbation Problems , 1995 .

[8]  M. Stynes,et al.  A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions , 1991 .

[9]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[10]  Ionel Michael Navon,et al.  Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection—diffusion type , 1998 .

[11]  Jichun Li,et al.  Quasioptimal uniformly convergent finite element methods for the elliptic boundary layer problem , 1997 .

[12]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[13]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[14]  Rolf Rannacher,et al.  Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .

[15]  G. Wittum,et al.  On Robust and Adaptive Multi-Grid Methods , 1994 .

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  J. Tinsley Oden,et al.  Finite Elements: Fluid Mechanics. , 1989 .