Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO

Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.

J. R. Palamos | P. B. Covas | J. Worden | A. Heptonstall | P. Wessels | R. Kennedy | N. Kijbunchoo | E. King | P. King | J. Kissel | W. Korth | G. Kuehn | M. Landry | B. Lantz | N. Lockerbie | M. Lormand | A. Lundgren | M. Macinnis | D. Macleod | A. Markosyan | E. Maros | I. Martin | D. Martynov | T. Massinger | F. Matichard | N. Mavalvala | D. McClelland | S. McCormick | G. McIntyre | J. McIver | G. Mendell | P. Meyers | J. Miller | R. Mittleman | D. Moraru | G. Moreno | G. Mueller | A. Mullavey | J. Munch | A. Neunzert | L. Nuttall | J. Oberling | M. Oliver | P. Oppermann | R. Oram | D. Ottaway | H. Overmier | J. Palamos | C. Palomba | M. Papa | W. Parker | B. Pearlstone | A. Pele | S. Penn | M. Phelps | O. Piccinni | V. Pierro | M. Principe | V. Quetschke | E. Quintero | H. Radkins | P. Raffai | S. Reid | K. Riles | J. Rollins | V. Roma | J. Romie | S. Rowan | T. Sadecki | L. Sammut | E. Sanchez | V. Sandberg | R. Savage | R. Schofield | D. Sellers | D. Shaddock | B. Shapiro | D. Sigg | B. Slagmolen | J. Smith | B. Sorazu | A. Staley | N. Strauss | L. Sun | D. Tanner | R. Taylor | M. Thomas | K. Thorne | E. Thrane | C. Torrie | G. Traylor | M. Tse | D. Tuyenbayev | G. Vajente | G. Valdes | A. Veggel | B. Abbott | R. Abbott | T. Abbott | C. Adams | R. Adhikari | V. Adya | A. Ananyeva | S. Appert | K. Arai | S. Aston | P. Astone | S. Ballmer | D. Barker | B. Barr | L. Barsotti | J. Bartlett | I. Bartos | M. Bejger | A. Bell | J. Betzwieser | G. Billingsley | J. Birch | S. Biscans | S. Biscoveanu | C. Blair | R. Blair | R. Bork | A. Brooks | T. Callister | H. Cao | N. Christensen | G. Ciani | F. Clara | P. Clearwater | S. Cooper | P. Corban | M. Coughlin | S. Countryman | M. Cowart | S. Crowder | A. Cumming | L. Cunningham | K. Danzmann | C. F. S. Costa | E. Daw | D. DeBra | R. DeSalvo | K. Dooley | S. Doravari | J. Driggers | S. Dwyer | T. Edo | A. Effler | T. Etzel | M. Evans | T. Evans | H. Fair | R. Fisher | H. Fong | R. Frey | P. Fritschel | P. Fulda | B. Gateley | J. Giaime | K. Giardina | E. Goetz | R. Goetz | B. Goncharov | S. Gras | H. Grote | E. Gustafson | R. Gustafson | E. Hall | G. Hammond | J. Hanks | T. Hardwick | G. Harry | M. Heintze | J. Hough | R. Inta | R. Jones | S. Kandhasamy | S. Karki | M. Kasprzack | S. Kaufer | K. Kawabe | W. Kim | M. Laxen | J. Liu | A. Matas | L. McCuller | T. Mcrae | E. Merilh | G. Mo | K. Mogushi | N. Mukund | T. Nelson | B. O'reilly | R. Ormiston | D. Ottaway | C. Perez | L. Prokhorov | O. Puncken | K. Ramirez | K. Rao | C. Romel | M. Ross | L. Sanchez | T. Shaffer | D. Shoemaker | B. Slagmolen | A. Spencer | K. Strain | J. Tasson | K. Toland | A. Vecchio | P. Veitch | K. Venkateswara | T. Vo | C. Vorvick | M. Wade | M. Walker | R. Ward | J. Warner | B. Weaver | R. Weiss | B. Willke | C. Wipf | J. Wofford | H. Yamamoto | C. Yancey | Hang Yu | Haocun Yu | L. Zhang | M. Zucker | J. Zweizig | D. Tao | S. M'arka | K. Izumi | Z. M'arka | J. Batch | C. Biwer | A. Colla | R. Derosa | H. Eggenstein | M. Factourovich | K. Giardina | K. Gushwa | I. Pinto | C. Torrie | A. A. van Veggel | B. Smith | S. Zhu | E. Coughlin | S. Hourihane | W. Liu | R. McCarthy | S. Schlassa | S. Trembath-reichert | C. Austin | S. Cooper | D. Coyne | A. Galiana | E. Ferreira | V. Frolov | M. Fyffe | C. Gray | J. Hanson | J. Kissel | P. Marsh | K. Mason | P. Nguyen | O. Oktavia | D. Reitze | N. Robertson | K. Ryan | P. Thomas | E. Gustafson | T. Evans | J. Giaime | I. Martin | N. Robertson | D. Shoemaker | J. R. Smith | D. Tanner | C. Wipf | A. Heptonstall | M. Zucker | D. McClelland | B. Abbott | A. Bell | A. F. Galiana | T. McRae | S. Zhu | Z. Márka | S. Zhu | G. Mcintyre | L. Zhang | R. Taylor | P. Thomas | M. Coughlin | A. Cumming | T. Hardwick | R. Jones | K. Kawabe | J. Miller | L. Zhang | M. Walker | A. van Veggel | G. Hammond | J. Kissel | M. Landry | B. Lantz | K. Mason | P. Covas | O. Oktavia | S. Mccormick

[1]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .

[2]  A. A. Starobinskii,et al.  Spectrum of Relict Gravitational Radiation and the Early State of the Universe - JETP Lett. 30, 682 (1979) , 1979 .

[3]  Watkins,et al.  Gravitational waves from first-order cosmological phase transitions. , 1992, Physical review letters.

[4]  Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. , 1997, Physical review. D, Particles and fields.

[5]  G. Veneziano,et al.  Pre-big-bang in string cosmology , 1992, hep-th/9211021.

[6]  Inflation, deflation, and frame independence in string cosmology , 1993, hep-th/9309023.

[7]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1994, Physical review. D, Particles and fields.

[8]  Limits on direct detection of gravitational waves. , 1994, Physical review. D, Particles and fields.

[9]  M. Turner Detectability of inflation-produced gravitational waves , 1996, astro-ph/9607066.

[10]  Bruce Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1999 .

[11]  Cosmic string production towards the end of brane inflation , 2002, hep-th/0204074.

[12]  Optimal combination of signals from colocated gravitational wave interferometers for use in searches for a stochastic background , 2004, gr-qc/0403093.

[13]  Thibault Damour,et al.  Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows , 2005 .

[14]  A radiometer for stochastic gravitational waves , 2005, gr-qc/0510096.

[15]  Richard Easther,et al.  Stochastic gravitational wave production after inflation , 2006, astro-ph/0601617.

[16]  Accessibility of the pre-big-bang models to LIGO , 2005, astro-ph/0510341.

[17]  V. Mandic,et al.  Accessibility of the pre-bigbang models to LIGO , 2006 .

[18]  Gravitational-wave stochastic background from cosmic strings. , 2006, Physical review letters.

[19]  Richard Easther,et al.  Gravitational wave production at the end of inflation. , 2007, Physical review letters.

[20]  V. Mandic,et al.  Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers , 2009, 0910.0858.

[21]  L. S. Collaboration,et al.  Noise Line Identification in LIGO S6 and Virgo VSR2 , 2010, 1109.0330.

[22]  T. Regimbau The Astrophysical Gravitational Wave Stochastic Background , 2011, 1101.2762.

[23]  M. Peloso,et al.  Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers , 2011, 1110.3327.

[24]  C. Broeck,et al.  Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz , 2011, 1112.5004.

[25]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[26]  Vincent Loriette,et al.  The NoEMi (Noise Frequency Event Miner) framework , 2012 .

[27]  First Test of Gravity Waves from Inflation using ADVANCED LIGO , 2013 .

[28]  E. Thrane,et al.  Estimates of maximum energy density of cosmological gravitational-wave backgrounds , 2014 .

[29]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[30]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[31]  Alejandro López,et al.  First test of high frequency Gravity Waves from inflation using Advanced LIGO , 2013, 1305.5855.

[32]  M. Gasperini Observable gravitational waves in pre-big bang cosmology: an update , 2016, 1606.07889.

[33]  Gainesville,et al.  The Advanced LIGO photon calibrators. , 2016, The Review of scientific instruments.

[34]  T. D. Abbott,et al.  Validating gravitational-wave detections: The advanced LIGO hardware injection system , 2016, 1612.07864.

[35]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[36]  David Blair,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.

[37]  K. Riles,et al.  Recent searches for continuous gravitational waves , 2017, 1712.05897.

[38]  All-sky search for periodic gravitational waves in the O1 LIGO data , 2017, 1707.02667.

[39]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[40]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[41]  B. A. Boom,et al.  Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. , 2016, Physical review letters.

[42]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[43]  Regression of non-linear coupling of noise in LIGO detectors , 2018 .

[44]  Y. Wang,et al.  Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run , 2017, 1710.02185.