Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans.

[1]  H. Lipkin Where is the ?c? , 1978 .

[2]  H. Horvitz,et al.  Egg-laying defective mutants of the nematode Caenorhabditis elegans. , 1983, Genetics.

[3]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[4]  Production of null mutants in the major intestinal esterase gene (ges-1) of the nematode Caenorhabditis elegans. , 1990, Genetics.

[5]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[6]  L. Avery,et al.  The genetics of feeding in Caenorhabditis elegans. , 1993, Genetics.

[7]  Morris F. Maduro,et al.  Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. , 1995, Genetics.

[8]  F C Kafatos,et al.  Phylogenetic perspectives in innate immunity. , 1999, Science.

[9]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[11]  G. Ruvkun,et al.  Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant , 2000, Nature.

[12]  Cori Bargmann,et al.  The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates , 2001, Cell.

[13]  J. Thomas,et al.  The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. , 2001, Development.

[14]  Leo X. Liu,et al.  Addresses: 1Laboratoire de Génétique et , 2022 .

[15]  K. Csiszȧr,et al.  A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. , 2001, Genomics.

[16]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[17]  S. Granjeaud,et al.  Inducible Antibacterial Defense System in C. elegans , 2002, Current Biology.

[18]  Oliver Hobert,et al.  PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. , 2002, BioTechniques.

[19]  Frederick M. Ausubel,et al.  A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity , 2002, Science.

[20]  Cori Bargmann,et al.  SEK‐1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans , 2002, EMBO reports.

[21]  Howard L. Weiner,et al.  Inflammation and therapeutic vaccination in CNS diseases , 2002, Nature.

[22]  Y. Kohara,et al.  TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM , 2004, Nature Immunology.

[23]  J. Hodgkin,et al.  The ERK MAP Kinase Cascade Mediates Tail Swelling and a Protective Response to Rectal Infection in C. elegans , 2004, Current Biology.

[24]  F. Ausubel,et al.  Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Naoki Hisamoto,et al.  Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Kunihiro Matsumoto,et al.  ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity , 2005, Nature Immunology.

[27]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[28]  Cori Bargmann,et al.  A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. , 2005, Genes & development.

[29]  Marc Parmentier,et al.  Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. , 2006, Cytokine & growth factor reviews.

[30]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[31]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[32]  Valerie Reinke,et al.  p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans , 2006, PLoS genetics.

[33]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[34]  A. Bowie,et al.  The human adaptor SARM negatively regulates adaptor protein TRIF–dependent Toll-like receptor signaling , 2006, Nature Immunology.

[35]  Adam Kuspa,et al.  Immune-like Phagocyte Activity in the Social Amoeba , 2007, Science.

[36]  C. Iadecola,et al.  MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival , 2007, The Journal of experimental medicine.

[37]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[38]  Cori Bargmann,et al.  Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[39]  Andrew D. Chisholm,et al.  Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis , 2008, Current Biology.

[40]  G. Hotamisligil,et al.  Nutrient sensing and inflammation in metabolic diseases , 2008, Nature Reviews Immunology.

[41]  H. Horvitz,et al.  FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans , 2008, Nature Neuroscience.

[42]  F. Ausubel,et al.  DAF-16-Dependent Suppression of Immunity During Reproduction in Caenorhabditis elegans , 2008, Genetics.

[43]  Evan Z. Macosko,et al.  Innate Immunity in Caenorhabditis elegans Is Regulated by Neurons Expressing NPR-1/GPCR , 2008, Science.

[44]  Erik Willems,et al.  Standardization of real-time PCR gene expression data from independent biological replicates. , 2008, Analytical biochemistry.

[45]  F. Ausubel,et al.  Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans , 2008, PLoS biology.

[46]  Trupti Kawli,et al.  Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling , 2008, Nature Immunology.

[47]  O. Zugasti,et al.  Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis , 2009, Nature Immunology.

[48]  I. Rodriguez,et al.  Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors , 2009, Nature.

[49]  Leonid Kruglyak,et al.  A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans , 2009, Science.

[50]  C. Rubin,et al.  Protein kinase D is an essential regulator of C. elegans innate immunity. , 2009, Immunity.

[51]  S. Liberles,et al.  Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ , 2009, Proceedings of the National Academy of Sciences.

[52]  N. Pujol,et al.  Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade. , 2009, Cell host & microbe.

[53]  Yun Zhang,et al.  Neural-immune communication in Caenorhabditis elegans. , 2009, Cell host & microbe.

[54]  D. Kalman,et al.  Conditioning protects C. elegans from lethal effects of enteropathogenic E. coli by activating genes that regulate lifespan and innate immunity. , 2009, Cell host & microbe.