CSIFT: A SIFT Descriptor with Color Invariant Characteristics

SIFT has been proven to be the most robust local invariant feature descriptor. SIFT is designed mainly for gray images. However, color provides valuable information in object description and matching tasks. Many objects can be misclassified if their color contents are ignored. This paper addresses this problem and proposes a novel colored local invariant feature descriptor. Instead of using the gray space to represent the input image, the proposed approach builds the SIFT descriptors in a color invariant space. The built Colored SIFT (CSIFT) is more robust than the conventional SIFT with respect to color and photometrical variations. The evaluation results support the potential of the proposed approach.

[1]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[2]  P. Kubelka,et al.  Errata: New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[3]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[4]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[5]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[6]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[7]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[8]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[9]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[10]  Brian V. Funt,et al.  Color Angular Indexing , 1996, ECCV.

[11]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[12]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Bernt Schiele,et al.  Probabilistic object recognition using multidimensional receptive field histograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[14]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[16]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Brian V. Funt,et al.  Is Machine Colour Constancy Good Enough? , 1998, ECCV.

[18]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[20]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[22]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[23]  Shree K. Nayar,et al.  Reflectance based object recognition , 1996, International Journal of Computer Vision.

[24]  A. Farag,et al.  DETECTION, CATEGORIZATION AND RECOGNITION OF ROAD SIGNS FOR AUTONOMOUS NAVIGATION , 2004 .

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[27]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[28]  A. Farag,et al.  Color segmentation using an Eigen color representation , 2005, 2005 7th International Conference on Information Fusion.

[29]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.