A spectral mimetic least-squares method
暂无分享,去创建一个
[1] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[2] Stanly Steinberg,et al. A Discrete Vector Calculus in Tensor Grids , 2011, Comput. Methods Appl. Math..
[3] Thomas A. Manteuffel,et al. On Mass-Conserving Least-Squares Methods , 2006, SIAM J. Sci. Comput..
[4] Marc I. Gerritsma,et al. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..
[5] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[6] Alain Bossavit. Computational electromagnetism and geometry : (3): Convergence , 1999 .
[7] Leszek Demkowicz,et al. Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .
[8] Marc Gerritsma,et al. Edge Functions for Spectral Element Methods , 2011 .
[9] Pavel B. Bochev,et al. Least-squares finite element methods , 2007 .
[10] Pavel B. Bochev,et al. On Least-Squares Finite Element Methods for the Poisson Equation and Their Connection to the Dirichlet and Kelvin Principles , 2005, SIAM J. Numer. Anal..
[11] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[12] John J. Nelson,et al. Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .
[13] Artur Palha,et al. Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.
[14] A. Bossavit,et al. Geometrical localisation of the degrees of freedom for whitney elements of higher order , 2006 .
[15] Michael M. J. Proot,et al. Mass- and Momentum Conservation of the Least-Squares Spectral Element Method for the Stokes Problem , 2006, J. Sci. Comput..
[16] Pavel B. Bochev,et al. A locally conservative least-squares method for Darcy flows , 2006 .
[17] M. Shashkov,et al. Mimetic Finite Difference Methods for Diffusion Equations , 2002 .
[18] Joseph E. Pasciak,et al. Least-squares for second-order elliptic problems , 1998 .
[19] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[20] G. Carey,et al. Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements , 1997 .
[21] J. Blair Perot,et al. Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .
[22] Ralf Hiptmair,et al. Discrete Hodge operators , 2001, Numerische Mathematik.
[23] Artur Palha,et al. Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms , 2013, J. Comput. Phys..
[24] Pavel B. Bochev,et al. Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.
[25] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[26] Thomas A. Manteuffel,et al. An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..
[27] James M. Hyman,et al. The convergence of mimetic discretization for rough grids , 2004 .