A spectral mimetic least-squares method

We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.

[1]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[2]  Stanly Steinberg,et al.  A Discrete Vector Calculus in Tensor Grids , 2011, Comput. Methods Appl. Math..

[3]  Thomas A. Manteuffel,et al.  On Mass-Conserving Least-Squares Methods , 2006, SIAM J. Sci. Comput..

[4]  Marc I. Gerritsma,et al.  Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..

[5]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[6]  Alain Bossavit Computational electromagnetism and geometry : (3): Convergence , 1999 .

[7]  Leszek Demkowicz,et al.  Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations , 2008 .

[8]  Marc Gerritsma,et al.  Edge Functions for Spectral Element Methods , 2011 .

[9]  Pavel B. Bochev,et al.  Least-squares finite element methods , 2007 .

[10]  Pavel B. Bochev,et al.  On Least-Squares Finite Element Methods for the Poisson Equation and Their Connection to the Dirichlet and Kelvin Principles , 2005, SIAM J. Numer. Anal..

[11]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[12]  John J. Nelson,et al.  Least-Squares Finite Element Method for the Stokes Problem with Zero Residual of Mass Conservation , 1997 .

[13]  Artur Palha,et al.  Mimetic framework on curvilinear quadrilaterals of arbitrary order , 2011, 1111.4304.

[14]  A. Bossavit,et al.  Geometrical localisation of the degrees of freedom for whitney elements of higher order , 2006 .

[15]  Michael M. J. Proot,et al.  Mass- and Momentum Conservation of the Least-Squares Spectral Element Method for the Stokes Problem , 2006, J. Sci. Comput..

[16]  Pavel B. Bochev,et al.  A locally conservative least-squares method for Darcy flows , 2006 .

[17]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Diffusion Equations , 2002 .

[18]  Joseph E. Pasciak,et al.  Least-squares for second-order elliptic problems , 1998 .

[19]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[20]  G. Carey,et al.  Local error estimation and adaptive remeshing scheme for least-squares mixed finite elements , 1997 .

[21]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[22]  Ralf Hiptmair,et al.  Discrete Hodge operators , 2001, Numerische Mathematik.

[23]  Artur Palha,et al.  Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms , 2013, J. Comput. Phys..

[24]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[25]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[26]  Thomas A. Manteuffel,et al.  An alternative least-squares formulation of the Navier-Stokes equations with improved mass conservation , 2007, J. Comput. Phys..

[27]  James M. Hyman,et al.  The convergence of mimetic discretization for rough grids , 2004 .