Adaptive Mesh Refinement for Immersed Boundary Methods

[1]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[2]  T. Colonius,et al.  A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions , 2008 .

[3]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[4]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[5]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[6]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[7]  Kyle D. Squires,et al.  LES and DES Investigations of Turbulent Flow over a Sphere at Re = 10,000 , 2003 .

[8]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[9]  Jochen Fröhlich,et al.  An improved immersed boundary method with direct forcing for the simulation of particle laden flows , 2012, J. Comput. Phys..

[10]  Elias Balaras,et al.  A moving-least-squares reconstruction for embedded-boundary formulations , 2009, J. Comput. Phys..

[11]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[12]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[13]  Donald Rockwell,et al.  Timing of vortex formation from an oscillating cylinder , 1994 .

[14]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[15]  Phillip Colella,et al.  A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..

[16]  Elias Balaras,et al.  A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies , 2008 .

[17]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[18]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[19]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[20]  Colin P. McNally,et al.  Divergence-free interpolation of vector fields from point values — exact ∇ ⋅B = 0 in numerical simulations , 2011, 1102.4852.

[21]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[22]  Alexei M. Khokhlov,et al.  Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations , 1997, astro-ph/9701194.

[23]  M. Lai,et al.  An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity , 2000 .

[24]  G. Iaccarino,et al.  Immersed boundary technique for turbulent flow simulations , 2003 .

[25]  Tuomo Rossi,et al.  A Parallel Fast Direct Solver for Block Tridiagonal Systems with Separable Matrices of Arbitrary Dimension , 1999, SIAM J. Sci. Comput..

[26]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[27]  Ning Qin,et al.  Fast dynamic grid deformation based on Delaunay graph mapping , 2006 .

[28]  Isao Nakamura Steady wake behind a sphere , 1976 .

[29]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[30]  Elias Balaras,et al.  An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..

[31]  Sungsu Lee,et al.  A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers , 2000 .

[32]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[33]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[34]  Rajat Mittal,et al.  Nested Cartesian grid method in incompressible viscous fluid flow , 2010, J. Comput. Phys..

[35]  V. C. Patel,et al.  Flow past a sphere up to a Reynolds number of 300 , 1999, Journal of Fluid Mechanics.

[36]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[37]  Alfredo Pinelli,et al.  Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers , 2010, J. Comput. Phys..

[38]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[39]  P. Ricker A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes , 2007, 0710.4397.

[40]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[41]  V. Armenio,et al.  An improved immersed boundary method for curvilinear grids , 2009 .

[42]  E. Balaras Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations , 2004 .

[43]  S. Orszag,et al.  Direct and Large-Eddy Simulation of the Flow Past a Sphere , 1993 .

[44]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[45]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[46]  Marcos Vanella,et al.  A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight , 2010 .

[47]  Scott R. Kohn,et al.  Managing application complexity in the SAMRAI object‐oriented framework , 2002, Concurr. Comput. Pract. Exp..

[48]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[49]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[50]  Jeffrey W. Banks,et al.  Deforming composite grids for solving fluid structure problems , 2012, J. Comput. Phys..

[51]  Jungwoo Kim,et al.  Sources of spurious force oscillations from an immersed boundary method for moving-body problems , 2011, J. Comput. Phys..

[52]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[53]  Andrew Barlow,et al.  A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations , 2007, J. Comput. Phys..

[54]  Fue-Sang Lien,et al.  A Cartesian Grid Method with Transient Anisotropic Adaptation , 2002 .

[55]  Elias Balaras,et al.  A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems , 2010, J. Comput. Phys..

[56]  A divergence‐free interpolation scheme for the immersed boundary method , 2008 .

[57]  P. Swarztrauber A direct Method for the Discrete Solution of Separable Elliptic Equations , 1974 .

[58]  Phillip Colella,et al.  An adaptive cut‐cell method for environmental fluid mechanics , 2009 .

[59]  P. Queutey,et al.  A NUMERICAL SIMULATION OF VORTEX SHEDDING FROM AN OSCILLATING CIRCULAR CYLINDER , 2002 .

[60]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[61]  L. Sirovich,et al.  Modeling a no-slip flow boundary with an external force field , 1993 .

[62]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[63]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[64]  Leslie Greengard,et al.  A Fast Direct Solver for Elliptic Partial Differential Equations on Adaptively Refined Meshes , 1999, SIAM J. Sci. Comput..

[65]  B. Yin,et al.  On the numerical oscillation of the direct-forcing immersed-boundary method for moving boundaries , 2012 .

[66]  D. L. Humphrey,et al.  Practical applications of adaptive mesh refinement (Rezoning) , 1980 .

[67]  Frédéric Gibou,et al.  A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids , 2006, J. Comput. Phys..

[68]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[69]  Boyce E. Griffith,et al.  On the Volume Conservation of the Immersed Boundary Method , 2012 .

[70]  Anshu Dubey,et al.  Optimization of multigrid based elliptic solver for large scale simulations in the FLASH code , 2012, Concurr. Comput. Pract. Exp..

[71]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[72]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[73]  Per Lötstedt,et al.  Anisotropic grid adaptation for Navier--Stokes' equations , 2003 .

[74]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[75]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[76]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[77]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[78]  John B. Bell,et al.  Approximate Projection Methods: Part I. Inviscid Analysis , 2000, SIAM J. Sci. Comput..