Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode

We compare the ability of higher cantilever eigenmodes to map conservative and dissipative tip-sample interactions in bimodal atomic force microscopy under three different control schemes, namely, open-loop (OL), constant-excitation phase-locked-loop (CE-PLL), and constant-amplitude phase-locked-loop (CA-PLL). We perform a direct comparison of these schemes by applying analytical expressions of the virial and dissipated power to imaging and spectroscopy experiments conducted on a two-component polymer sample in air. We find that OL and CE-PLL provide similar information, while CA-PLL explores a broader range of interactions, especially for softer samples, due to its constant sensitivity to tip-sample forces.

[1]  S. Solares Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude-modulation and frequency-force-modulation modes , 2007 .

[2]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[3]  Roger Proksch,et al.  Energy dissipation measurements in frequency-modulated scanning probe microscopy , 2010, Nanotechnology.

[4]  B. Gotsmann,et al.  Dynamic force spectroscopy using the frequency modulation technique with constant excitation , 2003 .

[5]  Harald Fuchs,et al.  Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation , 1996 .

[6]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[7]  B. Gotsmann,et al.  Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique , 2001 .

[8]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[9]  Ricardo Garcia,et al.  Theory of multifrequency atomic force microscopy. , 2008, Physical review letters.

[10]  L. Kantorovich,et al.  General theory of microscopic dynamical response in surface probe microscopy: from imaging to dissipation. , 2004, Physical review letters.

[11]  Ernst Meyer,et al.  Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. , 2009, Physical review letters.

[12]  Ricardo Garcia,et al.  Theory of phase spectroscopy in bimodal atomic force microscopy , 2009 .

[13]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[14]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[15]  S. Solares,et al.  Triple-frequency intermittent contact atomic force microscopy characterization: Simultaneous topographical, phase, and frequency shift contrast in ambient air , 2010 .

[16]  M. Tsukada,et al.  Effect of Microscopic Nonconservative Process on Noncontact Atomic Force Microscopy , 2000 .

[17]  Harald Fuchs,et al.  Conservative and dissipative tip-sample interaction forces probed with dynamic AFM , 1999 .

[18]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[19]  Ricardo Garcia,et al.  Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006, Nanotechnology.

[20]  Santiago D. Solares,et al.  Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy , 2010 .

[21]  Ricardo Garcia,et al.  Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. , 2010, Ultramicroscopy.

[22]  Javier Tamayo,et al.  Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy , 1997 .

[23]  Harald Fuchs,et al.  Dynamic force spectroscopy using the constant-excitation and constant-amplitude modes , 2005 .

[24]  Y. Sugawara,et al.  Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopya) , 2010 .