Structured Point Cloud Data Analysis Via Regularized Tensor Regression for Process Modeling and Optimization

ABSTRACT Advanced 3D metrology technologies such as coordinate measuring machine and laser 3D scanners have facilitated the collection of massive point cloud data, beneficial for process monitoring, control and optimization. However, due to their high dimensionality and structure complexity, modeling and analysis of point clouds are still a challenge. In this article, we use multilinear algebra techniques and propose a set of tensor regression approaches to model the variational patterns of point clouds and to link them to process variables. The performance of the proposed methods is evaluated through simulations and a real case study of turning process optimization.

[1]  Jaime A. Camelio,et al.  Statistical process monitoring approach for high-density point clouds , 2012, Journal of Intelligent Manufacturing.

[2]  F. Martina,et al.  Design for Additive Manufacturing , 2019 .

[3]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[4]  B. Wang,et al.  Unified functional tolerancing approach for precision cylindrical components , 2005 .

[5]  Dinggang Shen,et al.  Multiscale adaptive regression models for neuroimaging data , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[6]  T. K. Kundra,et al.  Additive Manufacturing Technologies , 2018 .

[7]  Kali Dass,et al.  Optimization of Machining Parameters in Turning of Titanium (Grade-5) Alloy Using Response Surface Methodology , 2012 .

[8]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[9]  Philip T. Reiss,et al.  The International Journal of Biostatistics Fast Function-on-Scalar Regression with Penalized Basis Expansions , 2011 .

[10]  A. Pramanik Problems and solutions in machining of titanium alloys , 2014 .

[11]  David W. Rosen,et al.  Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing , 2009 .

[12]  Stefano Petrò,et al.  Quality Control of Manufactured Surfaces , 2010 .

[13]  Massimo Pacella,et al.  Analyzing the Effect of Process Parameters on the Shape of 3D Profiles , 2011 .

[14]  David F. Rogers,et al.  An Introduction to NURBS , 2000 .

[15]  Massimo Pacella,et al.  From Profile to Surface Monitoring: SPC for Cylindrical Surfaces Via Gaussian Processes , 2014 .

[16]  John Zelek,et al.  Domain A Source Feature extractor Subnetwork Source Classification Subnetwork Task A Domain B Target Feature extractor Subnetwork Target Classification Subnetwork Task B Backpropagation Transfer Learning Frozen Network A Network , 2019 .

[17]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[18]  Ji Zhu,et al.  Regularized Multivariate Regression for Identifying Master Predictors with Application to Integrative Genomics Study of Breast Cancer. , 2008, The annals of applied statistics.

[19]  M. Pacella,et al.  Multilinear principal component analysis for statistical modeling of cylindrical surfaces: a case study , 2018 .

[20]  Xin Zhang,et al.  Parsimonious Tensor Response Regression , 2015, 1501.07815.

[21]  Bruce Western,et al.  9. Variance Function Regressions for Studying Inequality , 2009 .

[22]  Luo Xiao,et al.  Fast bivariate P‐splines: the sandwich smoother , 2013 .

[23]  K. Palanikumar,et al.  Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5) , 2012 .

[24]  K. D. Summerhays,et al.  Methods for evaluation of systematic geometric deviations in machined parts and their relationships to process variables , 1999 .

[25]  I. Helland Partial least squares regression and statistical models , 1990 .

[26]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[27]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[28]  M. Nicolescu,et al.  Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review , 2014 .

[29]  Anima Anandkumar,et al.  When are overcomplete topic models identifiable? uniqueness of tensor tucker decompositions with structured sparsity , 2013, J. Mach. Learn. Res..

[30]  Pierre Dutilleul,et al.  Maximum likelihood estimation for the tensor normal distribution: Algorithm, minimum sample size, and empirical bias and dispersion , 2013, J. Comput. Appl. Math..

[31]  Haiping Lu,et al.  MPCA: Multilinear Principal Component Analysis of Tensor Objects , 2008, IEEE Transactions on Neural Networks.

[32]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[33]  Hongtu Zhu,et al.  Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.

[34]  Bernard W. Silverman,et al.  Incorporating parametric effects into functional principal components analysis , 1995 .

[35]  Gabriele Guidi,et al.  3D digitizing of cultural heritage , 2001 .

[36]  João Paulo Davim,et al.  Design-of-experiments application in machining titanium alloys for aerospace structural components , 2015 .

[37]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[38]  Christoph Leyens,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[39]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[40]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[41]  Hao Yan,et al.  Image-Based Process Monitoring Using Low-Rank Tensor Decomposition , 2015, IEEE Transactions on Automation Science and Engineering.

[42]  Hao Yan,et al.  Anomaly Detection in Images With Smooth Background via Smooth-Sparse Decomposition , 2017, Technometrics.