The importance of tides for the Local Group dwarf spheroidals

There are two main tidal effects that can act on the Local Group dwarf spheroidals (dSphs): tidal stripping and tidal shocking. Using N-body simulations, we show that tidal stripping always leads to flat or rising projected velocity dispersions beyond a critical radius; it is ∼5 times more likely, when averaging over all possible projection angles, that the cylindrically averaged projected dispersion will rise, rather than be flat. In contrast, the Local Group dSphs, as a class, show flat or falling projected velocity dispersions interior to ∼1 kpc. This argues for tidal stripping being unimportant interior to ∼1 kpc for most of the Local Group dSphs observed so far. We show that tidal shocking may still be important, however, even when tidal stripping is not. This could explain the observed correlation for the Local Group dSphs between central surface brightness and distance from the nearest large galaxy. These results have important implications for the formation of the dSphs and for cosmology. As a result of the existence of cold stars at large radii in several dSphs, a tidal origin for the formation of these Local Group dSphs (in which they contain no dark matter) is strongly disfavoured. In the cosmological context, a naive solution to the missing satellites problem is to allow only the most massive substructure dark matter haloes around the Milky Way to form stars. It is possible for dSphs to reside within these haloes (∼10 10 M� ) and have their velocity dispersions lowered through the action of tidal shocks, but only if they have a central density core in their dark matter, rather than a cusp. A central density cusp persists even after unrealistically extreme tidal shocking and leads to central velocity dispersions which are too high to be consistent with data from the Local Group dSphs. dSphs can reside within cuspy dark matter haloes if their haloes are less massive (∼10 9 M� ) and therefore have smaller

[1]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[2]  Dehnen A Very Fast and Momentum-conserving Tree Code. , 2000, The Astrophysical journal.

[3]  Konrad KuijkenJohn Dubinski Nearly self-consistent disc–bulge–halo models for galaxies , 1995 .

[4]  L. Hernquist,et al.  N-body realizations of compound galaxies , 1993 .

[5]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[6]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[7]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[8]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[9]  J. Stadel,et al.  Density Profiles of Cold Dark Matter Substructure: Implications for the Missing-Satellites Problem , 2003, astro-ph/0312194.

[10]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[11]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[12]  R. Ibata,et al.  Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way , 2000, astro-ph/0004011.

[13]  J. Ostriker,et al.  On the Evolution of Globular Clusters , 1972 .

[14]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[15]  Parametric Dwarf Spheroidal Tidal Interaction , 2003, astro-ph/0302463.

[16]  Mark I. Wilkinson,et al.  A Dynamical Fossil in the Ursa Minor Dwarf Spheroidal Galaxy , 2003, astro-ph/0304093.

[17]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[18]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[19]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[20]  Heidelberg,et al.  Draco: A Failure of the Tidal Model , 2003, astro-ph/0302287.

[21]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[22]  R. H. Miller,et al.  Dwarf spheroidal galaxies and resonant orbital coupling , 1989 .

[23]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[24]  G. Lake,et al.  Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group , 2000, astro-ph/0011041.

[25]  Ben Moore,et al.  Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation , 2003, astro-ph/0309517.

[26]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[27]  Tidal Shocking by Extended Mass Distributions , 1999 .

[28]  Destruction of the Galactic Globular Cluster System , 1996, astro-ph/9603042.

[29]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[30]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[31]  Mark I. Wilkinson,et al.  First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal , 2001 .

[32]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[33]  F. Ferraro,et al.  Environmental effects on the structure of the dwarf spheroidal galaxies , 1995, astro-ph/9509081.

[34]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[35]  Alan McConnachieMike Irwin The satellite distribution of M31 , 2006 .

[36]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[37]  S. Majewski,et al.  Exploring Halo Substructure with Giant Stars. IV. The Extended Structure of the Ursa Minor Dwarf Spheroidal Galaxy , 2002, astro-ph/0205194.

[38]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[39]  Joachim Stadel,et al.  The Structural evolution of substructure , 2003 .

[40]  Jeremiah P. Ostriker,et al.  EFFECTS OF TIDAL SHOCKS ON THE EVOLUTION OF GLOBULAR CLUSTERS , 1998 .

[41]  HongSheng Zhao Analytical models for galactic nuclei , 1996 .

[42]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[43]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[44]  Eva K. Grebel,et al.  The Progenitors of Dwarf Spheroidal Galaxies , 2002, astro-ph/0301025.

[45]  S. White,et al.  The density profiles of tidally stripped galaxies , 1986 .

[46]  P. Saha Constructing stable spherical galaxy models , 1992 .

[47]  N. W. Evans,et al.  A photometrically and kinematically distinct core in the Sextans dwarf spheroidal galaxy , 2004 .

[48]  H. Morrison,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. I. Method and a Preliminary Measurement for Fornax , 2002, astro-ph/0209430.

[49]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[50]  Alan McConnachie,et al.  Structural parameters for the M31 dwarf spheroidals , 2005, astro-ph/0511004.

[51]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[52]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .