Disposable microfluidic devices: fabrication, function, and application.

This review article describes recent developments in microfluidics, with special emphasis on disposable plastic devices. Included is an overview of the common methods used in the fabrication of polymer microfluidic systems, including replica and injection molding, embossing, and laser ablation. Also described are the different methods by which on-chip operations--such as the pumping and valving of fluid flow, the mixing of different reagents, and the separation and detection of different chemical species--have been implemented in a microfluidic format. Finally, a few select biotechnological applications of microfluidics are presented to illustrate both the utility of this technology and its potential for development in the future.

[1]  R. Oleschuk,et al.  Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography , 2000, Analytical chemistry.

[2]  S. K. Griffiths,et al.  Low-dispersion turns and junctions for microchannel systems. , 2001, Analytical chemistry.

[3]  Andreas Manz,et al.  Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency , 1993 .

[4]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[5]  P. Wilding,et al.  Microchip module for blood sample preparation and nucleic acid amplification reactions. , 2001, Genome research.

[6]  Richard A Mathies,et al.  High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G M Whitesides,et al.  Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. , 2000, Analytical chemistry.

[8]  P. Zavracky,et al.  Multichannel microchip electrospray mass spectrometry. , 1997, Analytical chemistry.

[9]  B. Mohammadi,et al.  Optimization of turn geometries for microchip electrophoresis , 2001 .

[10]  J. Michael Ramsey,et al.  Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor , 1994 .

[11]  Martin A. M. Gijs,et al.  Utilization of the sol–gel technique for the development of novel stationary phases for capillary electrochromatography on a chip , 2001 .

[12]  Yan Li,et al.  Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network , 2004 .

[13]  Susan M Lunte,et al.  In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. , 2002, Analytical chemistry.

[14]  S. Clark,et al.  DNA sequencing using a four‐color confocal fluorescence capillary array scanner , 1996, Electrophoresis.

[15]  J. Michael Ramsey,et al.  Integrated microchip device with electrokinetically controlled solvent mixing for isocratic and gradient elution in micellar electrokinetic chromatography , 1997 .

[16]  J. Rossier,et al.  Polymer microspray with an integrated thick-film microelectrode. , 2001, Analytical chemistry.

[17]  Joseph Wang,et al.  Electrochemical detection for microscale analytical systems: a review. , 2002, Talanta.

[18]  E. Verpoorte Chip vision-optics for microchips. , 2003, Lab on a chip.

[19]  J P Landers,et al.  Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre- or postcolumn labeling. , 2001, Analytical chemistry.

[20]  H. Andersson,et al.  Microfluidic devices for cellomics: a review , 2003 .

[21]  R A Mathies,et al.  High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Detlef Snakenborg,et al.  Microstructure fabrication with a CO2 laser system , 2004 .

[23]  Paul Yager,et al.  Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in microTAS. , 2003, Lab on a chip.

[24]  D. J. Harrison,et al.  Microchip-based capillary electrophoresis of human serum proteins. , 1997, Journal of chromatography. A.

[25]  Luke P. Lee,et al.  Direct Laser Writing on Electrolessly Deposited Thin Metal Films for Applications in Micro- and Nanofluidics , 2004 .

[26]  G. Whitesides,et al.  Soft lithography in biology and biochemistry. , 2001, Annual review of biomedical engineering.

[27]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[28]  M. Wirth,et al.  Surface modification of the channels of poly(dimethylsiloxane) microfluidic chips with polyacrylamide for fast electrophoretic separations of proteins. , 2004, Analytical chemistry.

[29]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[30]  J. Henion,et al.  A polymeric microfluidic chip for CE/MS determination of small molecules. , 2001, Analytical chemistry.

[31]  H. Craighead,et al.  Characterizing electroosmotic flow in microfluidic devices. , 2002, Journal of chromatography. A.

[32]  A. Manz,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[33]  Daniel T Chiu,et al.  A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Z Hugh Fan,et al.  Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. , 2003, Analytical chemistry.

[35]  F. Švec,et al.  Towards stationary phases for chromatography on a microchip: Molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography , 2000, Electrophoresis.

[36]  Daniel T Chiu,et al.  Rapid prototyping of thermoset polyester microfluidic devices. , 2004, Analytical chemistry.

[37]  Amy E Herr,et al.  On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. , 2003, Analytical chemistry.

[38]  A. Berg,et al.  Micro Total Analysis Systems , 1995 .

[39]  T. Shepodd,et al.  Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths. , 2002, Analytical chemistry.

[40]  Peter C Hauser,et al.  High-voltage capacitively coupled contactless conductivity detection for microchip capillary electrophoresis. , 2002, Analytical chemistry.

[41]  R A Mathies,et al.  Capillary electrophoresis chips with integrated electrochemical detection. , 1998, Analytical chemistry.

[42]  G M Whitesides,et al.  Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. , 2001, Analytical chemistry.

[43]  Joël S. Rossier,et al.  Electrophoresis with electrochemical detection in a polymer microdevice , 2000 .

[44]  O Hofmann,et al.  Adaptation of capillary isoelectric focusing to microchannels on a glass chip. , 1999, Analytical chemistry.

[45]  Frédéric Reymond,et al.  Polymer microchips bonded by O2‐plasma activation , 2002, Electrophoresis.

[46]  Aaron R Wheeler,et al.  Microfluidic device for single-cell analysis. , 2003, Analytical chemistry.

[47]  Stephen C Jacobson,et al.  Diffusion coefficient measurements in microfluidic devices. , 2002, Talanta.

[48]  G. Whitesides,et al.  A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane). , 2002, Analytical chemistry.

[49]  L. Bousse,et al.  Protein sizing on a microchip. , 2001, Analytical chemistry.

[50]  J. Korlach,et al.  Focal volume confinement by submicrometer-sized fluidic channels. , 2004, Analytical chemistry.

[51]  E. Delamarche,et al.  Patterned delivery of immunoglobulins to surfaces using microfluidic networks. , 1997, Science.

[52]  N Tait,et al.  Fabrication of nanocolumns for liquid chromatography. , 1998, Analytical chemistry.

[53]  S. Quake,et al.  Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication , 2004 .

[54]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[55]  Frédéric Reymond,et al.  Microfabricated polymer injector for direct mass spectrometry coupling , 2002, Proteomics.

[56]  A. deMello,et al.  On-chip chromatography: the last twenty years. , 2002 .

[57]  R S Foote,et al.  Electrophoretic separation of proteins on a microchip with noncovalent, postcolumn labeling. , 2000, Analytical chemistry.

[58]  Iulia M Lazar,et al.  Multiple open-channel electroosmotic pumping system for microfluidic sample handling. , 2002, Analytical chemistry.

[59]  L. Locascio,et al.  Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. , 1999, Journal of chromatography. A.

[60]  Robin H. Liu,et al.  Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. , 2004, Analytical chemistry.

[61]  Shawn D. Llopis,et al.  Contact conductivity detection in poly(methyl methacrylate)-based microfluidic devices for analysis of mono- and polyanionic molecules. , 2002, Analytical chemistry.

[62]  Joe T. Lin,et al.  Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays , 1999 .

[63]  M. Gustafsson,et al.  Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. , 2004, Analytical chemistry.

[64]  Holger Becker,et al.  Hot embossing as a method for the fabrication of polymer high aspect ratio structures , 2000 .

[65]  A Manz,et al.  Chemical amplification: continuous-flow PCR on a chip. , 1998, Science.

[66]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[67]  Janusz Pawliszyn,et al.  Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection , 1999 .

[68]  J Wang,et al.  Micromachined electrophoresis chips with thick-film electrochemical detectors. , 1999, Analytical chemistry.

[69]  F. Regnier,et al.  Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. , 2002, Journal of chromatography. A.

[70]  M. Breadmore,et al.  Towards a microchip‐based chromatographic platform. Part 2: Sol‐gel phases modified with polyelectrolyte multilayers for capillary electrochromatography , 2003, Electrophoresis.

[71]  A. Manz,et al.  Design of an open-tubular column liquid chromatograph using silicon chip technology , 1990 .

[72]  S. Jacobson,et al.  Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices. , 1998, Analytical chemistry.

[73]  Frédéric Reymond,et al.  Polymer microfluidic chips for electrochemical and biochemical analyses , 2002, Electrophoresis.

[74]  R S Foote,et al.  Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. , 1998, Analytical chemistry.

[75]  C. M. Harris Shrinking the LC landscape. , 2003, Analytical chemistry.

[76]  D. J. Harrison,et al.  Chip-based capillary electrophoresis/mass spectrometry determination of carnitines in human urine. , 2001, Analytical chemistry.

[77]  V Hessel,et al.  An optimised split-and-recombine micro-mixer with uniform chaotic mixing. , 2004, Lab on a chip.

[78]  J P Landers,et al.  Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. , 2001, Analytical biochemistry.

[79]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[80]  R A Mathies,et al.  Turn geometry for minimizing band broadening in microfabricated capillary electrophoresis channels. , 2000, Analytical chemistry.

[81]  K. A. Wolfe,et al.  Towards a microchip‐based chromatographic platform. Part 1: Evaluation of sol‐gel phases for capillary electrochromatography , 2002, Electrophoresis.

[82]  J. Rossier,et al.  UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. , 1997, Analytical chemistry.

[83]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[84]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[85]  Risto Kostiainen,et al.  Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[86]  Robin H. Liu,et al.  Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Stephen C. Jacobson,et al.  Open channel electrochromatography on a microchip , 1994 .

[88]  S. Lunte,et al.  Microchip capillary electrophoresis/ electrochemistry , 2001, Electrophoresis.

[89]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[90]  Frédéric Reymond,et al.  Plasma etched polymer microelectrochemical systems. , 2002, Lab on a chip.

[91]  A. Ewing,et al.  Characterization of Electrochemical Array Detection for Continuous Channel Electrophoretic Separations in Micrometer and Submicrometer Channels , 1997 .

[92]  J. Michael Ramsey,et al.  Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip , 1994 .

[93]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[94]  Ute Drechsler,et al.  Autonomous microfluidic capillary system. , 2002, Analytical chemistry.

[95]  G. Whitesides,et al.  Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Steven A. Soper,et al.  Surface modification of polymer-based microfluidic devices , 2002 .

[97]  Elisabeth Verpoorte,et al.  An integrated fritless column for on-chip capillary electrochromatography with conventional stationary phases. , 2002, Analytical chemistry.

[98]  James P Landers,et al.  Molecular diagnostics on electrophoretic microchips. , 2003, Analytical chemistry.

[99]  J Michael Ramsey,et al.  High-efficiency, two-dimensional separations of protein digests on microfluidic devices. , 2003, Analytical chemistry.

[100]  Xu,et al.  Room-temperature imprinting method for plastic microchannel fabrication , 2000, Analytical chemistry.

[101]  S. Jacobson,et al.  High-Speed Separations on a Microchip , 1994 .

[102]  J Wang,et al.  Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes. , 1999, Analytical chemistry.

[103]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .

[104]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[105]  B. Karger,et al.  Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. , 1999, Analytical chemistry.

[106]  E. Verpoorte Microfluidic chips for clinical and forensic analysis , 2002, Electrophoresis.

[107]  Holger Becker,et al.  Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications , 1998 .

[108]  G. Cokelet,et al.  Fabrication of in vitro microvascular blood flow systems by photolithography. , 1993, Microvascular research.

[109]  Andreas Manz,et al.  High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device , 1994 .

[111]  S. Hjertén,et al.  Electroosmosis- and pressure-driven chromatography in chips using continuous beds. , 2000, Analytical chemistry.

[112]  George M. Whitesides,et al.  Microfluidics Section: Design and Fabrication of Integrated Passive Valves and Pumps for Flexible Polymer 3-Dimensional Microfluidic Systems , 2002 .

[113]  Z. Hugh Fan,et al.  Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. , 2003, Analytical chemistry.

[114]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[115]  M. Toner,et al.  Microengineering of cellular interactions. , 2000, Annual review of biomedical engineering.

[116]  Jan Lichtenberg,et al.  A microchip electrophoresis system with integrated in‐plane electrodes for contactless conductivity detection , 2002, Electrophoresis.

[117]  M. Tarlov,et al.  Surface characterization of laser-ablated polymers used for microfluidics. , 2002, Analytical chemistry.

[118]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[119]  Annelise E Barron,et al.  Microchannel wall coatings for protein separations by capillary and chip electrophoresis , 2003, Electrophoresis.

[120]  R. McCormick,et al.  Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. , 1997, Analytical chemistry.

[121]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[122]  Martin Pumera,et al.  Contactless conductivity detector for microchip capillary electrophoresis. , 2002, Analytical chemistry.

[123]  Stephen R Quake,et al.  Solving the "world-to-chip" interface problem with a microfluidic matrix. , 2003, Analytical chemistry.

[124]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[125]  Elisabeth Verpoorte,et al.  Comparison of the performance characteristics of poly(dimethylsiloxane) and Pyrex microchip electrophoresis devices for peptide separations. , 2003, Journal of chromatography. A.

[126]  A. Manz,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[127]  D. J. Harrison,et al.  Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices , 1996 .

[128]  W. B. Caldwell,et al.  SDS capillary gel electrophoresis of proteins in microfabricated channels. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[129]  L J Kricka,et al.  Manipulation and flow of biological fluids in straight channels micromachined in silicon. , 1994, Clinical chemistry.

[130]  N Gottschlich,et al.  Two-dimensional electrochromatography/capillary electrophoresis on a microchip. , 2001, Analytical chemistry.

[131]  Oliver Geschke,et al.  CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. , 2002, Lab on a chip.

[132]  C. Effenhauser,et al.  Integrated capillary electrophoresis on flexible silicone microdevices:  analysis of DNA restriction fragments and detection of single DNA molecules on microchips. , 1997, Analytical chemistry.

[133]  M. Schwarz,et al.  Recent developments in detection methods for microfabricated analytical devices. , 2001, Lab on a chip.

[134]  Igor L. Medintz,et al.  Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis. , 2002, Analytical chemistry.

[135]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[136]  R C Anderson,et al.  A miniature integrated device for automated multistep genetic assays. , 2000, Nucleic acids research.

[137]  Steffen Hardt,et al.  Integrated polymer chip for two-dimensional capillary gel electrophoresis. , 2004, Lab on a chip.

[138]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[139]  Marc J. Madou,et al.  Centrifuge-based fluidic platforms , 2004, Proceedings of the IEEE.

[140]  Loïc Dayon,et al.  Microfluidic systems in proteomics , 2003, Electrophoresis.

[141]  Ofer Levi,et al.  Integrated bio-fluorescence sensor. , 2003, Journal of chromatography. A.

[142]  A. Woolley,et al.  Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[143]  C. Culbertson,et al.  Microchip devices for high-efficiency separations. , 2000, Analytical chemistry.

[144]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[145]  H. Becker,et al.  Polymer hot embossing with silicon master structures , 1999 .

[146]  Mark Bachman,et al.  Surface-directed, graft polymerization within microfluidic channels. , 2004, Analytical chemistry.

[147]  Tatsuro Yoshida,et al.  Parallel microchannel-based measurements of individual erythrocyte areas and volumes. , 2003, Biophysical journal.

[148]  Robin H. Liu,et al.  Passive mixing in a three-dimensional serpentine microchannel , 2000, Journal of Microelectromechanical Systems.

[149]  Oliver Geschke,et al.  Microstructure fabrication with a CO2 laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam. , 2003, Lab on a chip.

[150]  C. Henry,et al.  Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. , 2000, Analytical chemistry.

[151]  R. G. Christensen,et al.  Fabrication of plastic microfluid channels by imprinting methods. , 1997, Analytical chemistry.

[152]  J. Landers,et al.  Rapid diagnosis of herpes simplex encephalitis using microchip electrophoresis of PCR products. , 1999, Clinical chemistry.

[153]  D. Chiu,et al.  Rapid prototyping of glass microchannels , 2003 .

[154]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[155]  L J Kricka,et al.  PCR in a silicon microstructure. , 1994, Clinical chemistry.

[156]  A. Woolley,et al.  Ultra-high-speed DNA sequencing using capillary electrophoresis chips. , 1995, Analytical chemistry.

[157]  S. Quake,et al.  An Integrated Microfabricated Cell Sorter , 2022 .

[158]  A D Stroock,et al.  An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. , 2001, Analytical chemistry.

[159]  J. Michael Ramsey,et al.  Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices , 1994 .

[160]  Kun Lian,et al.  Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. , 2002, Lab on a chip.

[161]  U. Larsen,et al.  Modular concept of a laboratory on a chip for chemical and biochemical analysis , 1998 .

[162]  Daniel T Chiu,et al.  Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds. , 2003, Lab on a chip.

[163]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[164]  J. Michael Ramsey,et al.  Microchip flow cytometry using electrokinetic focusing. , 1999, Analytical chemistry.

[165]  Jens Anders Branebjerg,et al.  Fast mixing by lamination , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[166]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .