Dynamic data reshaping for 3D mesh animation compression

Effective compression of 3D mesh animation data has been increasingly used in a variety of multimedia systems including virtual reality, gaming, remote transmission, display and storage. In this work, we propose a spectral clustering-based dynamic reshaping model that is performed on spatio-temporal segments to enhance the compression of 3D mesh sequences. After the lossy compression of spatio-temporal segments through Principal Component Analysis (PCA), we first compute a spectral clustering of all the PCA elements. Then, we introduce three novel reshaping schemes (namely, Row-wise matrix scheme, Arch-wise matrix scheme, and Curl-wise matrix scheme) of the PCA elements within each cluster. Through extensive experiments and comparisons, we show our model can substantially improve the compression performances on various 3D mesh sequences.

[1]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[2]  Hossein Ebrahimnezhad,et al.  Eigenspace compression: dynamic 3D mesh compression by restoring fine geometry to deformed coarse models , 2017, Multimedia Tools and Applications.

[3]  Peter Deutsch,et al.  ZLIB Compressed Data Format Specification version 3.3 , 1996, RFC.

[4]  Libor Vása,et al.  Compressing dynamic meshes with geometric laplacians , 2014, Comput. Graph. Forum.

[5]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[6]  Craig Gotsman,et al.  Compression of soft-body animation sequences , 2004, Comput. Graph..

[7]  Andrei Khodakovsky,et al.  Wavelet compression of parametrically coherent mesh sequences , 2004, SCA '04.

[8]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[9]  Václav Skala,et al.  COBRA: Compression of the Basis for PCA Represented Animations , 2009, Comput. Graph. Forum.

[10]  Hossein Ebrahimnezhad,et al.  NLME: a nonlinear motion estimation-based compression method for animated mesh sequence , 2019, The Visual Computer.

[11]  Konstantinos Moustakas,et al.  Adaptive compression of animated meshes by exploiting orthogonal iterations , 2017, The Visual Computer.

[12]  Amitabh Varshney,et al.  Kinetic depth images: flexible generation of depth perception , 2017, The Visual Computer.

[13]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[14]  I. Jolliffe Principal Components in Regression Analysis , 1986 .

[15]  Céline Hudelot,et al.  POMAR: Compression of progressive oriented meshes accessible randomly , 2013, Comput. Graph..

[16]  Guoliang Luo,et al.  Spatio-temporal Segmentation Based Adaptive Compression of Dynamic Mesh Sequences , 2020, ACM Trans. Multim. Comput. Commun. Appl..

[17]  Ricardo L. de Queiroz,et al.  Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform , 2016, IEEE Transactions on Image Processing.

[18]  Guisong Liu,et al.  Enforcing Affinity Feature Learning through Self-attention for Person Re-identification , 2020, ACM Trans. Multim. Comput. Commun. Appl..

[19]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Rémy Prost,et al.  Wavelet-based progressive compression scheme for triangle meshes: wavemesh , 2004, IEEE Transactions on Visualization and Computer Graphics.

[21]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.

[22]  Céline Hudelot,et al.  3D Mesh Compression , 2015, ACM Comput. Surv..

[23]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[24]  Thomas Maugey,et al.  A Geometry-aware Framework for Compressing 3D Mesh Textures , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).