Star formation along the Hubble sequence: Radial structure of the star formation of CALIFA galaxies

The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by the CALIFA survey. The sample under study contains 416 galaxies observed with IFS, covering a wide range of Hubble types and stellar masses. Spectral synthesis techniques are applied to obtain radial profiles of the intensity of the star formation rate in the recent past, and the local sSFR. To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF) we stack the individual radial profiles in bins of galaxy morphology and stellar masses. Our main results are: a) The intensity of SFR shows declining profiles that exhibit very little differences between spirals. The dispersion between the profiles is significantly smaller in late type spirals. This confirms that the MSSF is a sequence of galaxies with nearly constant intensity of SFR b) sSFR values scale with Hubble type and increase radially outwards, with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out, and that this process is faster in the central, bulge-dominated part than in the disks. c) As a whole, and at all radii, E and S0 are off the MSSF. d) Applying the volume-corrections for the CALIFA sample, we obtain a density of star formation in the local Universe of 0.0105 Msun/yr/Mpc^{-3}. Most of the star formation is occurring in the disks of spirals. e) The volume averaged birthrate parameter, b'=0.39, suggests that the present day Universe is forming stars at 1/3 of its past average rate. E, S0, and the bulge of early type spirals contribute little to the recent SFR of the Universe, which is dominated by the disks of later spirals. f) There is a tight relation between the intensity of the SFR and stellar mass, defining a local MSSF relation with a logarithmic slope of 0.8.

[1]  H. Rix,et al.  STELLAR MASSES AND STAR FORMATION RATES FOR 1 M GALAXIES FROM SDSS+WISE , 2015, 1506.00648.

[2]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[3]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[4]  L. Kewley,et al.  The SAMI Galaxy Survey: Instrument specification and target selection , 2014, 1407.7335.

[5]  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[6]  Andreas Kelz,et al.  PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2006 .

[7]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[8]  Jeffrey A. Newman,et al.  IMPROVED ESTIMATES OF THE MILKY WAY’S STELLAR MASS AND STAR FORMATION RATE FROM HIERARCHICAL BAYESIAN META-ANALYSIS , 2014, 1407.1078.

[9]  J. P. Torres-Papaqui,et al.  The history of star-forming galaxies in the Sloan Digital Sky Survey , 2007, 0707.3578.

[10]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[11]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[12]  K. Viironen,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey: Early Report , 2010, 1012.3002.

[13]  Spain.,et al.  Testing spectral models for stellar populations with star clusters – I. Methodology , 2009, 0912.0410.

[14]  Star Formation in AEGIS Field Galaxies since z = 1.1: Staged Galaxy Formation and a Model of Mass-dependent Gas Exhaustion , 2007, astro-ph/0703056.

[15]  K. Alatalo,et al.  The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies , 2015, 1501.03723.

[16]  D.Lutz,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES* , 2012 .

[17]  Luth,et al.  A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN? , 2010, 1012.4426.

[18]  L. Wisotzki,et al.  The star formation history of CALIFA galaxies: Radial structures , 2013, 1310.5517.

[19]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[20]  A. Heavens,et al.  The cosmic evolution of metallicity from the SDSS fossil record , 2008, 0804.3091.

[21]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[22]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[23]  C. Leitherer,et al.  Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths , 2005, astro-ph/0501204.

[24]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[25]  R. Cid Fernandes,et al.  Warm ionized gas in CALIFA early-type galaxies - 2D emission-line patterns and kinematics for 32 galaxies , 2015, 1511.02191.

[26]  Y. Ascasibar,et al.  Do galaxies form a spectroscopic sequence , 2011, 1104.1388.

[27]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[28]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[29]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[30]  A. Cimatti,et al.  THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT z = 2 , 2011, 1108.0933.

[31]  M. S. Roberts The Content of Galaxies: Stars and Gas , 1963 .

[32]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[33]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[34]  Austria,et al.  Age and metallicity gradients in early-type galaxies: A dwarf to giant sequence , 2011, 1105.4809.

[35]  L. Galbany,et al.  Spiral-like star-forming patterns in CALIFA early-type galaxies , 2015, 1511.00744.

[36]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[37]  D. Hunter,et al.  Star formation histories of irregular galaxies , 1984 .

[38]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[39]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[40]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[41]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[42]  R. Terlevich,et al.  Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies , 2015, 1504.07010.

[43]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): bivariate functions of Hα star-forming galaxies , 2014, 1411.2557.

[44]  The Disk Mass project; science case for a new PMAS IFU module , 2003, astro-ph/0311555.

[45]  R. López-Fernández,et al.  Resolving galaxies in time and space: II: Uncertainties in the spectral synthesis of datacubes , 2013, 1307.0562.

[46]  R. Cid Fernandes,et al.  Stellar population gradients in galaxy discs from the CALIFA survey - The influence of bars , 2014, 1407.0002.

[47]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[48]  K. Schawinski,et al.  UV-Optical Colors as Probes of Early-Type Galaxy Evolution , 2006, astro-ph/0601029.

[49]  R. Cid Fernandes,et al.  Resolving galaxies in time and space - I. Applying STARLIGHT to CALIFA datacubes , 2013, 1304.5788.

[50]  B. Lundgren,et al.  A CANDELS–3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < z < 1.5 , 2013, 1310.5702.

[51]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[52]  E. Holmberg A photographic photometry of extragalactic nebulae , 1958 .

[53]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[54]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[55]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[56]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[57]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[58]  A. Renzini,et al.  AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES , 2015, 1502.01027.

[59]  P. Ocvirk FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY , 2009, 0911.3156.

[60]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[61]  D. Weinberg,et al.  On the evolutionary history of stars and their fossil mass and light , 2006, astro-ph/0604534.

[62]  I. Paris,et al.  STECKMAP: STEllar Content and Kinematics from high resolution galactic spectra via Maximum A Posteriori , 2005, astro-ph/0507002.

[63]  L. Galbany,et al.  Star formation in the local Universe from the CALIFA sample. I. Calibrating the SFR using integral field spectroscopy data , 2015, 1507.03801.

[64]  A. Quirrenbach,et al.  The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies , 2015, 1506.04157.

[65]  Empirical diagnostics of the starburst-agn connection , 2001, astro-ph/0104186.

[66]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[67]  R. Cid Fernandes,et al.  INSIGHTS ON THE STELLAR MASS–METALLICITY RELATION FROM THE CALIFA SURVEY , 2014, 1407.1315.

[68]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[69]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[70]  R. Cid Fernandes,et al.  THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: A VIEW OF INSIDE-OUT GROWTH FROM THE CALIFA SURVEY , 2013 .

[71]  C. Leitherer,et al.  The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations , 2004 .

[72]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[73]  S. Bamford,et al.  Galaxy And Mass Assembly: evolution of the Hα luminosity function and star formation rate density up to z < 0.35 , 2013, 1305.5308.

[74]  W. Percival,et al.  The stellar evolution of Luminous Red Galaxies, and its dependence on colour, redshift, luminosity and modelling , 2010, 1011.2346.

[75]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[76]  L. Wisotzki,et al.  Imprints of galaxy evolution on H II regions - Memory of the past uncovered by the CALIFA survey , 2014, 1409.8293.

[77]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[78]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[79]  E. P'erez,et al.  Pipe3D, a pipeline to analyze Integral Field Spectroscopy data: I. New fitting phylosophy of FIT3D , 2015, 1509.08552.

[80]  R. Cid Fernandes,et al.  A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA , 2013, 1311.7052.

[81]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[82]  B. Groves,et al.  Fitting the integrated spectral energy distributions of galaxies , 2010, 1008.0395.

[83]  R. Cid Fernandes,et al.  The ionized gas in the CALIFA early-type galaxies I. Mapping two representative cases: NGC 6762 and NGC 5966 , 2012, 1202.0511.

[84]  A. Heavens,et al.  Star formation and metallicity history of the SDSS galaxy survey: unlocking the fossil record , 2002, astro-ph/0211546.

[85]  L. Galbany,et al.  Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA , 2015, 1511.01300.

[86]  B. Tinsley EVOLUTION OF THE STARS AND GAS IN GALAXIES. , 2022, 2203.02041.

[87]  R. Cid Fernandes,et al.  The nature of LINER galaxies: Ubiquitous hot old stars and rare accreting black holes , 2013, Proceedings of the International Astronomical Union.

[88]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[89]  C. Leitherer,et al.  The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations* , 2004 .

[90]  M. Schmidt The Rate of Star Formation , 1959 .

[91]  K. Jahnke,et al.  CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey , 2014, 1407.2939.

[92]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[93]  France,et al.  Semi-empirical analysis of Sloan Digital Sky Survey galaxies – II. The bimodality of the galaxy population revisited , 2005, astro-ph/0511578.

[94]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[95]  L. Wisotzki,et al.  Nebular emission and the Lyman continuum photon escape fraction in CALIFA early-type galaxies , 2013, 1306.2338.

[96]  C. Leitherer,et al.  Stellar Population in LLAGN.I: Ground-based observations , 2004, astro-ph/0401416.

[97]  L. Galbany,et al.  SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY , 2016, 1602.02770.

[98]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[99]  W. Sargent,et al.  The History of Star Formation and the Colors of Late-Type Galaxies , 1973 .

[100]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[101]  Effects of Red Shifts on the Distribution of Nebulae. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[102]  C. Morisset,et al.  Ionization of the diffuse gas in galaxies: hot low-mass evolved stars at work , 2011, Proceedings of the International Astronomical Union.

[103]  J. P. Torres-Papaqui,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey - III. Second public data release , 2012, 1210.8150.