On approximation of the Laplace–Beltrami operator and the Willmore energy of surfaces

Discrete Laplace–Beltrami operators on polyhedral surfaces play an important role for various applications in geometry processing and related areas like physical simulation or computer graphics. While discretizations of the weak Laplace–Beltrami operator are well‐studied, less is known about the strong form. We present a principle for constructing strongly consistent discrete Laplace–Beltrami operators based on the cotan weights. The consistency order we obtain, improves previous results reported for the mesh Laplacian. Furthermore, we prove consistency of the discrete Willmore energies corresponding to the discrete Laplace–Beltrami operators.

[1]  Guoliang Xu Convergence of discrete Laplace-Beltrami operators over surfaces , 2004 .

[2]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[3]  Sheng-Gwo Chen,et al.  Convergence of discrete Laplace-Beltrami operators over surfaces , 2004 .

[4]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[5]  Tamal K. Dey,et al.  Convergence, stability, and discrete approximation of Laplace spectra , 2010, SODA '10.

[6]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[7]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[8]  M. Wardetzky Discrete Differential Operators on Polyhedral Surfaces - Convergence and Approximation , 2007 .

[9]  Konrad Polthier,et al.  Constraint-based fairing of surface meshes , 2007 .

[10]  I. Holopainen Riemannian Geometry , 1927, Nature.

[11]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[12]  Olga Sorkine-Hornung,et al.  Interactive Shape Modeling and Deformation , 2009, Eurographics.

[13]  Jean-Marie Morvan,et al.  Approximation of the Normal Vector Field and the Area of a Smooth Surface , 2004, Discret. Comput. Geom..

[14]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[15]  Eitan Grinspun,et al.  Simple and efficient implementation of discrete plates and shells , 2008, SIGGRAPH 2008.

[16]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[17]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[18]  Robert L. Foote,et al.  Regularity of the distance function , 1984 .

[19]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[20]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[21]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[22]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[23]  Mikhail Belkin,et al.  Towards a Theoretical Foundation for Laplacian-Based Manifold Methods , 2005, COLT.

[24]  P. LShWIP Convergence of Discrete Laplace-Beltrami Operators Over Surfaces , 2004 .

[25]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[26]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[27]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[28]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[29]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.