Structure and molecular dynamics of solid-state inclusion complexes of cyclodextrin and permethylated cyclodextrin with benzaldehyde studied by high-resolution CP/MAS13C NMR

[1]  Y. Inoue,et al.  A high-resolution C.P.-M.A.S. 13C-N.M.R. study of solid-state cyclomaltohexaose inclusion-complexes: chemical shifts and structure of the host cyclomaltohexaose , 1985 .

[2]  Y. Inoue,et al.  Geometry of cyclohexaamylose inclusion complexes with some substituted benzenes in aqueous solution based on carbon-13 NMR chemical shifts , 1985 .

[3]  Y. Inoue,et al.  C.p.-m.a.s. 13C-n.m.r. study of the molecular dynamics of some solid-state inclusion-complexes of cyclomaltohexaose and cyclomaltoheptaose , 1985 .

[4]  Y. Inoue,et al.  A cross-polarisation-magic-angle spinning 13C-n.m.r. study of solid-state cycloamylose inclusion-complexes with substituted benzenes: 13C-chemical shifts and molecular dynamics of the included guests , 1984 .

[5]  M. Okazaki,et al.  High-resolution solid-state 13C CP MAS NMR spectra of some β-cyclodextrin inclusion complexes with nitriles , 1983 .

[6]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XVI. Crystal Structure of Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin-p-Iodophenol (1 : 1) Complex Tetrahydrate , 1983 .

[7]  J. Szejtli Dimethyl-β-cyclodextrin as parenteral drug carrier , 1983 .

[8]  Y. Inoue,et al.  Molecular motion of p-substituted phenols in solid-state cyclomaltohexaose inclusion-complexes , 1983 .

[9]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Nitrophenol (1 : 1) Complex Monohydrate , 1982 .

[10]  K. Harata,et al.  The structure of the Cyclodextrin Complex. XIV. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–Benzaldehyde (1 : 1) Complex , 1982 .

[11]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XI. Crystal Structure of Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–p-Iodoaniline Monohydrate , 1982 .

[12]  W. Saenger,et al.  Crystal and molecular structure of cyclohepta-amylose dodecahydrate , 1982 .

[13]  S. Suzuki,et al.  A 13C cross polarization–magic angle spinning (CP-MAS) n.m.r. study of crystalline cyclohexa-amylose inclusion complexes. Conformation-dependent 13C chemical shifts are related to the dihedral angles of glycosidic linkages , 1982 .

[14]  J. Szejtli Cyclodextrins and their inclusion complexes , 1982 .

[15]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. X. Crystal Structure of α-Cyclodextrin-Benzaldehyde (1 : 1) Complex Hexahyderate , 1981 .

[16]  J. Waugh,et al.  Transverse relaxation of dipolar coupled spin systems under rf irradiation: Detecting motions in solids , 1981 .

[17]  M. Czugler,et al.  Crystal and molecular structure of a 2,6-tetradeca-O-methyl-β-cyclodextrin–adamantanol 1 : 1 inclusion complex , 1981 .

[18]  T. Drakenberg,et al.  The torsional barrier in aromatic carbonyl compounds , 1980 .

[19]  P. Nánási,et al.  Synthesis and 13C‐NMR Spectroscopy of Methylated beta‐Cyclodextrins , 1980 .

[20]  G. R. Sanderson,et al.  Methylated cycloamyloses (cyclodextrins) and their inclusion properties , 1979 .

[21]  L. M. Schwartz,et al.  The complexation chemistry of cyclohexaamyloses. 3. Per-O-methylcyclohexaamylose adducts with 4-biphenylcarboxylate and p-methylcinnamate anions , 1979 .

[22]  J. Lehn,et al.  Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α- and β-cyclodextrins , 1978 .

[23]  A. N. Garroway,et al.  High resolution NMR spectroscopy in solids , 1976 .

[24]  R. Breslow,et al.  Modification of the cavity of .beta.-cyclodextrin by flexible capping , 1975 .

[25]  A. Boicelli,et al.  Rotational barrier of benzaldehyde as determined by c-13 nmr spectroscopy , 1975 .

[26]  Wolfram Saenger,et al.  Topography of cyclodextrin inclusion complexes. III. Crystal and molecular structure of cyclohexaamylose hexahydrate, the water dimer inclusion complex , 1974 .

[27]  M. Sundaralingam,et al.  Some aspects of stereochemistry and hydrogen bonding of carbohydrates related to polysaccharide conformations , 1968 .

[28]  W. Schneider,et al.  Substituent Effects on the C13 and H1 Chemical Shifts in Monosubstituted Benzenes , 1961 .