Extended Biogeography Based Optimization for Natural Terrain Feature Classification from Satellite Remote Sensing Images

Remote sensing image classification in recent years has been a proliferating area of global research for obtaining geo-spatial information from satellite data. In Biogeography Based Optimization (BBO), knowledge sharing between candidate problem solutions or habitats depends on the migration mechanisms of the ecosystem. In this paper an extension to Biogeography Based-Optimization is proposed for image classification by incorporating the non-linear migration model into the evolutionary process. It is observed in recent literature that sinusoidal migration curves better represent the natural migration phenomenon as compared to the existing approach of using linear curves. The motivation of this paper is to apply this realistic migration model in BBO, from the domain of natural computing, for natural terrain features classification. The adopted approach calculates the migration rate using Rank- based fitness criteria. The results indicate that highly accurate land-cover features are extracted using the extended BBO technique.