Modern methods and trends in mycotoxin analysis

La tendance a fixer des normes de plus en plus strictes pour les mycotoxines s'accentue au fil des annees et necessite le developpement de methodes d'analyse toujours plus sensibles et fiables afin de pouvoir realiser les controles necessaires a un cout acceptable. Dans cette revue, on fait une distinction entre les methodes de reference (ou de confirmation) qui permettent de detecter, identifier et quantifier les mycotoxines dans differentes matrices (CCM, GC, HPLC, LC-MS, LC-MS/MS), et les methodes rapides de screening servant essentiellement a detecter la presence d'une mycotoxine ou d'un groupe de toxines (tests ELISA, tests de type bandelette, tests a debit lateral, et fluorometrie en solution). Cet article traite egalement des recents developpements concernant les technologies utilisees pour la detection des mycotoxines, et plus particulierement la spectroscopie infrarouge (NIR, MIR), les polymeres a empreinte moleculaire (MIPs), l'electrophorese capillaire, la polarisation de fluorescence, les bandelettes fluorescentes de type FLORIDA, les biocapteurs a resonance du plasmon de surface (SPR) ou a fibre optique, et finalement les capteurs immunologiques de type matriciel.

[1]  J. Gilbert,et al.  Liquid chromatographic method for determination of patulin in clear and cloudy apple juices and apple puree: collaborative study. , 2000, Journal of AOAC International.

[2]  J. Frisvad,et al.  Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection) , 1987 .

[3]  S. Eremin,et al.  Fluorescence polarization immunoassay based on a monoclonal antibody for the detection of ochratoxin A , 2004 .

[4]  J. Gilbert,et al.  Immunoaffinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in hazelnut paste: interlaboratory study. , 2005, Journal of AOAC International.

[5]  J. Pestka,et al.  Analysis of zearalenone in cereal and Swine feed samples using an automated flow-through immunosensor. , 2005, Journal of agricultural and food chemistry.

[6]  Liberty Sibanda,et al.  A collaborative study to validate novel field immunoassay kits for rapid mycotoxin detection. , 2002, International journal of food microbiology.

[7]  I. Bobeldijk,et al.  Analysis of patulin in dutch food, an evaluation of a SPE based method , 2005 .

[8]  C. Maragos,et al.  Fluorescence polarization as a means for determination of fumonisins in maize. , 2001, Journal of agricultural and food chemistry.

[9]  K. K. Tekinşen,et al.  Aflatoxin M1 in white pickle and Van otlu (herb) cheeses consumed in southeastern Turkey , 2005 .

[10]  E. Chiavaro,et al.  Ochratoxin A determination in ham by immunoaffinity clean-up and a quick fluorometric method , 2002, Food additives and contaminants.

[11]  A Logrieco,et al.  DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: A review , 2005, Food additives and contaminants.

[12]  P. Brereton,et al.  Simultaneous determination of aflatoxins and ochratoxin A in food using a fully automated immunoaffinity column clean-up and liquid chromatography-fluorescence detection. , 2004, Journal of chromatography. A.

[13]  Wolfgang Lindner,et al.  Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[14]  E. Anklam,et al.  Determination of aflatoxin B1 in baby food (infant formula) by immunoaffinity column cleanup liquid chromatography with postcolumn bromination: collaborative study. , 2001, Journal of AOAC International.

[15]  H. Nelis,et al.  Development of a flow-through enzyme immunoassay and application in screening green coffee samples for ochratoxin A with confirmation by high-performance liquid chromatography. , 2001, Journal of food protection.

[16]  F. Berthiller,et al.  Performance of new clean-up column for the determination of ochratoxin A in cereals and foodstuffs by HPLC-FLD , 2004, Food additives and contaminants.

[17]  W. Horwitz,et al.  Quality assurance in the analysis of foods and trace constituents. , 1980, Journal - Association of Official Analytical Chemists.

[18]  Albert E. Pohland,et al.  Mycotoxin Method Evaluation , 2001 .

[19]  C. Maragos,et al.  Detection of zearalenone and related metabolites by fluorescence polarization immunoassay. , 2004, Journal of food protection.

[20]  R. Krska,et al.  Improving methods of analysis for mycotoxins: molecularly imprinted polymers for deoxynivalenol and zearalenone , 2003, Food additives and contaminants.

[21]  H. Humpf,et al.  Bound fumonisin B1: analysis of fumonisin-B1 glyco and amino acid conjugates by liquid chromatography-electrospray ionization-tandem mass spectrometry. , 2003, Journal of agricultural and food chemistry.

[22]  R. Göbel,et al.  Simultaneous determination of aflatoxins, ochratoxin A, and zearalenone in grains by new immunoaffinity column/liquid chromatography. , 2004, Journal of AOAC International.

[23]  R. Vogel,et al.  A Biosensor-based Immunoassay for Rapid Screening of Deoxynivalenol Contamination in Wheat , 2002 .

[24]  J. Miller,et al.  Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution , 2004, Analytical and bioanalytical chemistry.

[25]  M. Trucksess,et al.  Immunoaffinity column coupled with solution fluorometry or liquid chromatography postcolumn derivatization for determination of aflatoxins in corn, peanuts, and peanut butter: collaborative study. , 1991, Journal - Association of Official Analytical Chemists.

[26]  Naresh Magan,et al.  Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. , 2004, Biosensors & bioelectronics.

[27]  R. Krska,et al.  International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxynivalenol in agricultural commodities , 2001, Food additives and contaminants.

[28]  C. Maragos,et al.  Fluorescence polarization as a tool for the determination of deoxynivalenol in wheat , 2002, Food additives and contaminants.

[29]  R. Krska,et al.  Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry. , 2005, Journal of chromatography. A.

[30]  M. Nakajima,et al.  Determination of ochratoxin A in green coffee by immunoaffinity column cleanup and liquid chomatography: collaborative study. , 2005, Journal of AOAC International.

[31]  A. Pittet,et al.  Rapid, low cost thin-layer chromatographic screening method for the detection of ochratoxin A in green coffee at a control level of 10 microg/kg. , 2002, Journal of agricultural and food chemistry.

[32]  C. Baggiani,et al.  A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A , 2001, Bioseparation.

[33]  Wolfgang Lindner,et al.  Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction. , 2002, Journal of chromatography. A.

[34]  M Valcárcel,et al.  Screening of aflatoxins in feed samples using a flow system coupled to capillary electrophoresis. , 2002, Journal of chromatography. A.

[35]  Heidi R. C. Dietrich,et al.  Biosensors and multiple mycotoxin analysis , 2003 .

[36]  Chris M. Maragos,et al.  Capillary electrophoresis with laser-induced fluorescence : Method for the mycotoxin ochratoxin A , 1998 .

[37]  W. Marasas,et al.  Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. , 2005, International journal of food microbiology.

[38]  J. Richard,et al.  Determination of aflatoxins in grains and raw peanuts by a rapid procedure with fluorometric analysis. , 2000, Journal of AOAC International.

[39]  Ewald Usleber,et al.  Rapid Detection of Fumonisin B1 in Corn-Based Food by Competitive Direct Dipstick Enzyme Immunoassay/Enzyme-Linked Immunofiltration Assay with Integrated Negative Control Reaction , 1995 .

[40]  R. W. Frei,et al.  On-line electrochemical reagent production for detection in liquid chromatography and continuous flow systems , 1984 .

[41]  Chris M. Maragos,et al.  Detection of the mycotoxin fumonisin B1 by a combination of immunofluorescence and capillary electrophoresis , 1997 .

[42]  R. Krska,et al.  The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals , 2001, Fresenius' journal of analytical chemistry.

[43]  C. Cavaliere,et al.  Automated on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry method for the determination of ochratoxin A in wine and beer. , 2005, Journal of agricultural and food chemistry.

[44]  C. V. Van Peteghem,et al.  Development of a solid-phase cleanup and portable rapid flow-through enzyme immunoassay for the detection of ochratoxin a in roasted coffee. , 2002, Journal of agricultural and food chemistry.

[45]  Itziar Ruisánchez,et al.  Qualitative method for determination of aflatoxin B1 in nuts. , 2004, Journal of AOAC International.

[46]  E. Stigter,et al.  Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol. , 2003, Journal of agricultural and food chemistry.

[47]  E. Anklam,et al.  Immunoaffinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in peanut butter, pistachio paste, fig paste, and paprika powder: collaborative study. , 2000, Journal of AOAC International.

[48]  C. Dall’Asta,et al.  A rapid multiresidual determination of type A and type B trichothecenes in wheat flour by HPLC-ESI-MS , 2005, Food additives and contaminants.

[49]  H. Humpf,et al.  Quantitative analysis of Fusarium mycotoxins in maize using accelerated solvent extraction before liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry , 2004, Food additives and contaminants.

[50]  H. Humpf,et al.  Determination of N-(carboxymethyl)fumonisin B(1) in corn products by liquid chromatography/electrospray ionization--mass spectrometry. , 2001, Journal of agricultural and food chemistry.

[51]  H. Humpf,et al.  Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. , 2005, Molecular nutrition & food research.

[52]  M. Petz,et al.  Investigation of various extractants for the analysis of aflatoxin B1 in different food and feed matrices. , 1999, Food additives and contaminants.

[53]  D. Boyacioğlu,et al.  Comparative study of three different methods for the determination of aflatoxins in tahini. , 2002, Journal of agricultural and food chemistry.

[54]  Mohammad Sarwar Nasir,et al.  Development of a fluorescence polarization assay for the determination of aflatoxins in grains. , 2002, Journal of agricultural and food chemistry.

[55]  J B Shear,et al.  Determination of biological toxins using capillary electrokinetic chromatography with multiphoton-excited fluorescence. , 2000, Analytical chemistry.

[56]  Miriam M. Ngundi,et al.  Array biosensor for detection of ochratoxin A in cereals and beverages. , 2005, Analytical chemistry.

[57]  R. Dietrich,et al.  Multimycotoxin dipstick enzyme immunoassay applied to wheat. , 1995, Food additives and contaminants.

[58]  R. Krska,et al.  Development of a method for the determination of Fusarium fungi on corn using mid-infrared spectroscopy with attenuated total reflection and chemometrics. , 2003, Analytical chemistry.

[59]  Vicki S. Thompson,et al.  Fiber-optic immunosensor for mycotoxins. , 1999, Natural toxins.

[60]  A. Visconti,et al.  Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum , 2005 .

[61]  Karsten Haupt,et al.  Imprinted polymers-tailor-made mimics of antibodies and receptors. , 2003, Chemical communications.

[62]  Chris M. Maragos,et al.  Emerging Technologies for Mycotoxin Detection , 2004 .

[63]  R. Krska,et al.  Advances in the analysis of mycotoxins and its quality assurance , 2005, Food additives and contaminants.

[64]  M. Zeece Capillary electrophoresis: a new analytical tool for food science , 1992 .

[65]  R. Tsao,et al.  Micellar electrokinetic capillary electrophoresis for rapid analysis of patulin in apple cider. , 2000, Journal of agricultural and food chemistry.

[66]  V. Lattanzio,et al.  Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. , 2005, Journal of chromatography. A.

[67]  Michael Thompson,et al.  Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing , 2000 .

[68]  Lena Åberg,et al.  Near infrared spectroscopy for determination of mycotoxins in cereals , 2003 .