Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations
暂无分享,去创建一个
[1] Henny B. Sipma,et al. Constructing invariants for hybrid systems , 2004, Formal Methods Syst. Des..
[2] Marie-Françoise Roy,et al. On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .
[3] André Platzer,et al. Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .
[4] Rolf Neuhaus,et al. Computation of real radicals of polynomial ideals — II , 1998 .
[5] G. Sacks. A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .
[6] G. Laumon,et al. A Series of Modern Surveys in Mathematics , 2000 .
[7] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[8] George E. Collins,et al. Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..
[9] André Platzer,et al. Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..
[10] Ashish Tiwari,et al. Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.
[11] Michael Stillman,et al. A criterion for detectingm-regularity , 1987 .
[12] Peter Jonsson,et al. Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..
[13] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[14] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[15] André Platzer,et al. Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.
[16] Rajeev Alur,et al. A Temporal Logic of Nested Calls and Returns , 2004, TACAS.
[17] André Platzer,et al. Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.
[18] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[19] André Platzer,et al. The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..
[20] Patrick Cousot,et al. Abstract Interpretation Frameworks , 1992, J. Log. Comput..
[21] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[22] S. Lie,et al. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .
[23] Eva Zerz,et al. Controlled Invariant Hypersurfaces of Polynomial Control Systems , 2012 .
[24] G. Darboux,et al. Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .
[25] A. Goriely. Integrability and Nonintegrability of Dynamical Systems , 2001 .
[26] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[27] Naijun Zhan,et al. Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems , 2011, Math. Comput. Sci..
[28] N. G. Parke,et al. Ordinary Differential Equations. , 1958 .
[29] Naijun Zhan,et al. Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).
[30] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[31] A Pettorossi. Automata theory and formal languages , 2008 .
[32] André Platzer,et al. A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.
[33] Robert McNaughton. Review: Alfred Tarski, A decision method for elementary algebra and geometry , 1953 .
[35] Franco Blanchini,et al. Set invariance in control , 1999, Autom..
[36] Arnaldo Vieira Moura,et al. Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods , 2010, SAS.
[37] Sriram Sankaranarayanan,et al. Automatic invariant generation for hybrid systems using ideal fixed points , 2010, HSCC '10.
[38] George E. Collins,et al. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.
[39] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[40] Konrad Schm. Around Hilbert's 17th Problem , 2012 .
[41] Thomas Dubé,et al. The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..
[42] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .