Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations

In this paper we seek to provide greater automation for formal deductive verification tools working with continuous and hybrid dynamical systems. We present an efficient procedure to check invariance of conjunctions of polynomial equalities under the flow of polynomial ordinary differential equations. The procedure is based on a necessary and sufficient condition that characterizes invariant conjunctions of polynomial equalities. We contrast this approach to an alternative one which combines fast and sufficient (but not necessary) conditions using differential cuts for soundly restricting the system evolution domain.

[1]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2004, Formal Methods Syst. Des..

[2]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[3]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[4]  Rolf Neuhaus,et al.  Computation of real radicals of polynomial ideals — II , 1998 .

[5]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[6]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[7]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[8]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[9]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[10]  Ashish Tiwari,et al.  Deductive Verification of Continuous Dynamical Systems , 2009, FSTTCS.

[11]  Michael Stillman,et al.  A criterion for detectingm-regularity , 1987 .

[12]  Peter Jonsson,et al.  Essential Convexity and Complexity of Semi-Algebraic Constraints , 2012, Log. Methods Comput. Sci..

[13]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[14]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[15]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[16]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[17]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[18]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[19]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[20]  Patrick Cousot,et al.  Abstract Interpretation Frameworks , 1992, J. Log. Comput..

[21]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[22]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[23]  Eva Zerz,et al.  Controlled Invariant Hypersurfaces of Polynomial Control Systems , 2012 .

[24]  G. Darboux,et al.  Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré , 1878 .

[25]  A. Goriely Integrability and Nonintegrability of Dynamical Systems , 2001 .

[26]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[27]  Naijun Zhan,et al.  Automatically Discovering Relaxed Lyapunov Functions for Polynomial Dynamical Systems , 2011, Math. Comput. Sci..

[28]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[29]  Naijun Zhan,et al.  Computing semi-algebraic invariants for polynomial dynamical systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[30]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[31]  A Pettorossi Automata theory and formal languages , 2008 .

[32]  André Platzer,et al.  A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.

[33]  Robert McNaughton Review: Alfred Tarski, A decision method for elementary algebra and geometry , 1953 .

[35]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[36]  Arnaldo Vieira Moura,et al.  Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods , 2010, SAS.

[37]  Sriram Sankaranarayanan,et al.  Automatic invariant generation for hybrid systems using ideal fixed points , 2010, HSCC '10.

[38]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[39]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[40]  Konrad Schm Around Hilbert's 17th Problem , 2012 .

[41]  Thomas Dubé,et al.  The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..

[42]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .