Simulation–optimization of solar-assisted desiccant cooling system for subtropical Hong Kong

Abstract Solar cooling is a novel approach, which primarily makes use of solar energy, instead of electricity, to drive the air-conditioning systems. In this study, solar-assisted desiccant cooling system (SADCS) was designed to handle the cooling load of typical office in the subtropical Hong Kong, in which half of the building energy is consumed by the air-conditioning systems. The SADCS mainly consisted of desiccant wheel, thermal wheel, evaporative coolers, solar air collectors and gas-fired auxiliary heater, it could directly tackle both the space load and ventilation load. Since the supply air flow is same as the outdoor air flow, the SADCS has a feature of sufficient ventilation that enhances the indoor air quality. Although it is inevitable to involve the auxiliary heater for regeneration of desiccant wheel, it is possible to minimize its usage by the optimal design and control scheme of the SADCS. Through simulation–optimization approach, the SADCS can provide a satisfactory performance in the subtropical Hong Kong.