Computer Vision – ECCV 2016

Symmetry in visual data represents repeated patterns or shapes that is easily found in natural and human-made objects. Symmetry pattern on an object works as a salient visual feature attracting human attention and letting the object to be easily recognized. Most existing symmetry detection methods are based on sparsely detected local features describing the appearance of their neighborhood, which have difficulty in capturing object structure mostly supported by edges and contours. In this work, we propose a new reflection symmetry detection method extracting robust 4-dimensional Appearance of Structure descriptors based on a set of outstanding neighbourhood edge segments in multiple scales. Our experimental evaluations on multiple public symmetry detection datasets show promising reflection symmetry detection results on challenging real world and synthetic images.

[1]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[2]  Yang Song,et al.  Learning Fine-Grained Image Similarity with Deep Ranking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[4]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[5]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[6]  Pietro Perona,et al.  Multiclass recognition and part localization with humans in the loop , 2011, 2011 International Conference on Computer Vision.

[7]  Luc Van Gool,et al.  Anchored Neighborhood Regression for Fast Example-Based Super-Resolution , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Saurabh Singh,et al.  Part Localization using Multi-Proposal Consensus for Fine-Grained Categorization , 2015, BMVC.

[9]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[10]  Horst Bischof,et al.  Fast and accurate image upscaling with super-resolution forests , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Jitendra Malik,et al.  Learning Rich Features from RGB-D Images for Object Detection and Segmentation , 2014, ECCV.

[12]  Michael S. Brown,et al.  High quality depth map upsampling for 3D-TOF cameras , 2011, 2011 International Conference on Computer Vision.

[13]  Thomas Pock,et al.  A Deep Variational Model for Image Segmentation , 2014, GCPR.

[14]  Sebastian Thrun,et al.  An Application of Markov Random Fields to Range Sensing , 2005, NIPS.

[15]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[16]  Marcel Simon,et al.  Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Carsten Rother,et al.  Depth Super Resolution by Rigid Body Self-Similarity in 3D , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Rob Fergus,et al.  Learning from Noisy Labels with Deep Neural Networks , 2014, ICLR.

[19]  Jonathan Tompson,et al.  Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation , 2014, NIPS.

[20]  Antonio Criminisi,et al.  Harvesting Image Databases from the Web , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[21]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[22]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[23]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Raquel Urtasun,et al.  Fully Connected Deep Structured Networks , 2015, ArXiv.

[25]  Thomas Brox,et al.  Bilevel Optimization with Nonsmooth Lower Level Problems , 2015, SSVM.

[26]  David A. Shamma,et al.  The New Data and New Challenges in Multimedia Research , 2015, ArXiv.

[27]  Dani Lischinski,et al.  Joint bilateral upsampling , 2007, SIGGRAPH 2007.

[28]  Ya Zhang,et al.  Augmenting Strong Supervision Using Web Data for Fine-Grained Categorization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  Stephen Lin,et al.  Data-driven depth map refinement via multi-scale sparse representation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Horst Bischof,et al.  Pushing the limits of stereo using variational stereo estimation , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[32]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[33]  Justin Domke,et al.  Generic Methods for Optimization-Based Modeling , 2012, AISTATS.

[34]  Subhransu Maji,et al.  Similarity Comparisons for Interactive Fine-Grained Categorization , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Trevor Darrell,et al.  Part-Based R-CNNs for Fine-Grained Category Detection , 2014, ECCV.

[36]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[37]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Trevor Darrell,et al.  Pose pooling kernels for sub-category recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[41]  Sebastian Thrun,et al.  A Noise‐aware Filter for Real‐time Depth Upsampling , 2008 .

[42]  Fei-Fei Li,et al.  Combining randomization and discrimination for fine-grained image categorization , 2011, CVPR 2011.

[43]  Pierre Sermanet,et al.  Attention for Fine-Grained Categorization , 2014, ICLR.

[44]  Joachim Denzler,et al.  Part Detector Discovery in Deep Convolutional Neural Networks , 2014, ACCV.

[45]  Pietro Perona,et al.  Caltech-UCSD Birds 200 , 2010 .

[46]  Gary R. Bradski,et al.  A codebook-free and annotation-free approach for fine-grained image categorization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[48]  Michael Elad,et al.  On Single Image Scale-Up Using Sparse-Representations , 2010, Curves and Surfaces.

[49]  Mark Craven,et al.  Multiple-Instance Active Learning , 2007, NIPS.

[50]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[51]  Horst Bischof,et al.  Variational Depth Superresolution Using Example-Based Edge Representations , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[52]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Linda G. Shapiro,et al.  Unsupervised Template Learning for Fine-Grained Object Recognition , 2012, NIPS.

[54]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[55]  Catherine Wah,et al.  Attribute-Based Detection of Unfamiliar Classes with Humans in the Loop , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[56]  Gabriel J. Brostow,et al.  Patch Based Synthesis for Single Depth Image Super-Resolution , 2012, ECCV.

[57]  Luc Van Gool,et al.  A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution , 2014, ACCV.

[58]  Iasonas Kokkinos,et al.  Understanding Objects in Detail with Fine-Grained Attributes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[60]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[61]  Pietro Perona,et al.  Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Horst Bischof,et al.  Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation , 2013, 2013 IEEE International Conference on Computer Vision.

[63]  Fukui Kazuhiro,et al.  Realistic CG Stereo Image Dataset With Ground Truth Disparity Maps , 2012 .

[64]  Alan L. Yuille,et al.  Learning Deep Structured Models , 2014, ICML.

[65]  Ruigang Yang,et al.  Spatial-Depth Super Resolution for Range Images , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[67]  Andrew W. Fitzgibbon,et al.  Efficient regression of general-activity human poses from depth images , 2011, 2011 International Conference on Computer Vision.

[68]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[69]  Roberto Cipolla,et al.  SceneNet: Understanding Real World Indoor Scenes With Synthetic Data , 2015, ArXiv.

[70]  Forrest N. Iandola,et al.  Deformable Part Descriptors for Fine-Grained Recognition and Attribute Prediction , 2013, 2013 IEEE International Conference on Computer Vision.