Extremely Red Galaxies at z = 5–9 with MIRI and NIRSpec: Dusty Galaxies or Obscured Active Galactic Nuclei?

<jats:p>We study a new population of extremely red objects (EROs) recently discovered by the James Webb Space Telescope (JWST) based on their NIRCam colors F277W − F444W > 1.5 mag. We find 37 EROs in the Cosmic Evolution Early Release Science Survey (CEERS) field with F444W < 28 mag and photometric redshifts between 5 < <jats:italic>z</jats:italic> < 7, with median <jats:inline-formula> <jats:tex-math> <?CDATA $z={6.9}_{-1.6}^{+1.0}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>z</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>6.9</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjad167eieqn1.gif" xlink:type="simple" /> </jats:inline-formula>. Surprisingly, despite their red long-wavelength colors, these EROs have blue short-wavelength colors (F150W − F200W ∼ 0 mag) indicative of bimodal spectral energy distributions (SEDs) with a red, steep slope in the rest-frame optical, and a blue, flat slope in the rest-frame UV. Moreover, all these EROs are unresolved, point-like sources in all NIRCam bands. We analyze the SEDs of eight of them with MIRI and NIRSpec observations using stellar population models and active galactic nucleus (AGN) templates. We find that dusty galaxies or obscured AGNs provide similarly good SED fits but different stellar properties: massive and dusty, <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}{M}_{\star }/{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⋆</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjad167eieqn2.gif" xlink:type="simple" /> </jats:inline-formula> ∼ 10 and <jats:italic>A</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub> ≳ 3 mag, or low mass and obscured, <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}{M}_{\star }/{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⋆</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjad167eieqn3.gif" xlink:type="simple" /> </jats:inline-formula> ∼ 7.5 and <jats:italic>A</jats:italic> <jats:sub> <jats:italic>V</jats:italic> </jats:sub> ∼ 0 mag, hosting an obscured quasi-stellar object (QSO). SED modeling does not favor either scenario, but their unresolved sizes are more suggestive of AGNs. If any EROs are confirmed to have <jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}{M}_{\star }/{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⋆</mml:mo> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjad167eieqn4.gif" xlink:type="simple" /> </jats:inline-formula> ≳ 10.5, it would increase the pre-JWST number density at <jats:italic>z</jats:italic> > 7 by up to a factor ∼60. Similarly, if they are QSOs with luminosities in the <jats:italic>L</jats:italic> <jats:sub>bol</jats:sub> > 10<jats:sup>45–46</jats:sup> erg s<jats:sup>−1</jats:sup> range, their number would exceed that of bright blue QSOs by more than three orders of magnitude. Additional photometry at mid-infrared wavelengths will reveal the true nature of the red continuum emission in these EROs and will place this puzzling population in the right context of galaxy evolution.</jats:p>

[1]  L. Y. Aaron Yung,et al.  Hidden Little Monsters: Spectroscopic Identification of Low-mass, Broad-line AGNs at z > 5 with CEERS , 2023, The Astrophysical Journal Letters.

[2]  A. Zitrin,et al.  UNCOVER: JWST Spectroscopy of Three Cold Brown Dwarfs at Kiloparsec-scale Distances , 2023, The Astrophysical Journal.

[3]  J. Hjorth,et al.  Little Red Dots or Brown Dwarfs? NIRSpec Discovery of Three Distant Brown Dwarfs Masquerading as NIRCam-selected Highly Reddened Active Galactic Nuclei , 2023, The Astrophysical Journal Letters.

[4]  Astrophysics,et al.  A T-Dwarf candidate from JWST early release NIRCam data , 2023, Monthly Notices of the Royal Astronomical Society.

[5]  T. Miller,et al.  Sizes and Mass Profiles of Candidate Massive Galaxies Discovered by JWST at 7 < z < 9: Evidence for Very Early Formation of the Central ∼100 pc of Present-day Ellipticals , 2023, The Astrophysical Journal Letters.

[6]  L. Y. Aaron Yung,et al.  Two Massive, Compact, and Dust-obscured Candidate z ≃ 8 Galaxies Discovered by JWST , 2023, The Astrophysical Journal.

[7]  L. Y. Aaron Yung,et al.  JWST CEERS probes the role of stellar mass and morphology in obscuring galaxies , 2023, Astronomy &amp; Astrophysics.

[8]  J. Dunlop,et al.  Confirmation and refutation of very luminous galaxies in the early Universe , 2023, Nature.

[9]  M. Ouchi,et al.  A JWST/NIRSpec First Census of Broad-line AGNs at z = 4–7: Detection of 10 Faint AGNs with M BH ∼ 106–108 M ⊙ and Their Host Galaxy Properties , 2023, The Astrophysical Journal.

[10]  Martin P. Ward,et al.  Life beyond 30: Probing the −20 < M UV < −17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey , 2023, The Astrophysical Journal Letters.

[11]  P. P. van der Werf,et al.  MIDIS: Strong (Hβ+[O iii]) and Hα Emitters at Redshift z ≃ 7–8 Unveiled with JWST NIRCam and MIRI Imaging in the Hubble eXtreme Deep Field , 2023, The Astrophysical Journal.

[12]  L. Y. Aaron Yung,et al.  CEERS Spectroscopic Confirmation of NIRCam-selected z ≳ 8 Galaxy Candidates with JWST/NIRSpec: Initial Characterization of Their Properties , 2023, The Astrophysical Journal Letters.

[13]  L. Y. Aaron Yung,et al.  CEERS Key Paper IV: Galaxies at $4, 2022, 2301.00027.

[14]  Astrophysics,et al.  JWST UNCOVER: Extremely Red and Compact Object at z phot ≃ 7.6 Triply Imaged by A2744 , 2022, The Astrophysical Journal.

[15]  L. Y. Aaron Yung,et al.  Spectral Templates Optimal for Selecting Galaxies at z > 8 with the JWST , 2022, The Astrophysical Journal.

[16]  S. Lilly,et al.  EIGER. II. First Spectroscopic Characterization of the Young Stars and Ionized Gas Associated with Strong Hβ and [O iii] Line Emission in Galaxies at z = 5–7 with JWST , 2022, The Astrophysical Journal.

[17]  L. Y. Aaron Yung,et al.  CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST , 2022, The Astrophysical Journal Letters.

[18]  L. Y. Aaron Yung,et al.  CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results , 2022, The Astrophysical Journal Letters.

[19]  L. Y. Aaron Yung,et al.  CEERS Key Paper. IV. A Triality in the Nature of HST-dark Galaxies , 2022, The Astrophysical Journal Letters.

[20]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for Roman – the beginning of a new era of deep-wide galaxy surveys , 2022, Monthly Notices of the Royal Astronomical Society.

[21]  S. Charlot,et al.  A JWST/NIRCam Study of key contributors to reionization: The star-forming and ionizing properties of UV-faint z ∼ 7 − 8 galaxies , 2022, Monthly Notices of the Royal Astronomical Society.

[22]  A. Grazian,et al.  JWST unveils heavily obscured (active and passive) sources up to z~13 , 2022, 2208.02825.

[23]  L. Y. Aaron Yung,et al.  Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations , 2022, The Astrophysical Journal Letters.

[24]  Benjamin D. Johnson,et al.  JWST Reveals a Population of Ultrared, Flattened Galaxies at 2 ≲ z ≲ 6 Previously Missed by HST , 2022, The Astrophysical Journal Letters.

[25]  M. Boylan-Kolchin Stress testing ΛCDM with high-redshift galaxy candidates , 2022, Nature Astronomy.

[26]  S. Charlot,et al.  On the ages of bright galaxies ∼500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[27]  A. Pallottini,et al.  On the stunning abundance of super-early, luminous galaxies revealed by JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[28]  G. Illingworth,et al.  Unveiling the nature of infrared bright, optically dark galaxies with early JWST data , 2022, Monthly Notices of the Royal Astronomical Society.

[29]  T. Treu,et al.  The brightest galaxies at cosmic dawn , 2022, Monthly Notices of the Royal Astronomical Society.

[30]  T.Morishita,et al.  Early results from GLASS-JWST. XIII. A faint, distant, and cold brown dwarf , 2022, 2207.14802.

[31]  G. Brammer,et al.  A population of red candidate massive galaxies ~600 Myr after the Big Bang , 2022, Nature.

[32]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[33]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[34]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[35]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for JWST – VI. Simulated light-cones and galaxy clustering predictions , 2022, Monthly Notices of the Royal Astronomical Society.

[36]  D. Watson,et al.  A dusty compact object bridging galaxies and quasars at cosmic dawn , 2022, Nature.

[37]  L. Y. Aaron Yung,et al.  On the Stellar Populations of Galaxies at z = 9–11: The Growth of Metals and Stellar Mass at Early Times , 2021, The Astrophysical Journal.

[38]  J. Wisniewski,et al.  New Candidate Extreme T Subdwarfs from the Backyard Worlds: Planet 9 Citizen Science Project , 2021, The Astrophysical Journal.

[39]  R. Bouwens,et al.  Galaxy Stellar Mass Functions from z ∼ 10 to z ∼ 6 using the Deepest Spitzer/Infrared Array Camera Data: No Significant Evolution in the Stellar-to-halo Mass Ratio of Galaxies in the First Gigayear of Cosmic Time , 2021, The Astrophysical Journal.

[40]  L. Y. Aaron Yung,et al.  Mock light-cones and theory friendly catalogues for the CANDELS survey , 2021 .

[41]  R. Bouwens,et al.  New Determinations of the UV Luminosity Functions from z ∼ 9 to 2 Show a Remarkable Consistency with Halo Growth and a Constant Star Formation Efficiency , 2021, The Astronomical Journal.

[42]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[43]  S. Charlot,et al.  The [O iii]+H β equivalent width distribution at z ≃ 7: implications for the contribution of galaxies to reionization , 2020, 2005.02402.

[44]  A. Fontana,et al.  Space Densities and Emissivities of Active Galactic Nuclei at z > 4 , 2019, The Astrophysical Journal.

[45]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for JWST – II. Physical properties and scaling relations for galaxies at z = 4–10 , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.

[47]  Philip J. Tait,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[48]  M. C. Eliche-Moral,et al.  Optically Faint Massive Balmer Break Galaxies at z > 3 in the CANDELS/GOODS Fields , 2018, The Astrophysical Journal.

[49]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts forJWST– I. UV luminosity functions atz = 4–10 , 2018, Monthly Notices of the Royal Astronomical Society.

[50]  C. Conselice,et al.  Evidence for Merger-driven Growth in Luminous, High-z, Obscured AGNs in the CANDELS/COSMOS Field , 2017, 1712.02424.

[51]  J. Trump,et al.  CANDELS: Elevated Black Hole Growth in the Progenitors of Compact Quiescent Galaxies at z ∼ 2 , 2017, 1710.05921.

[52]  A. Coil,et al.  X-rays across the galaxy population - II. The distribution of AGN accretion rates as a function of stellar mass and redshift , 2017, 1705.01132.

[53]  Benjamin D. Johnson,et al.  Nebular Continuum and Line Emission in Stellar Population Synthesis Models , 2016, 1611.08305.

[54]  S. Wuyts,et al.  BULGE-FORMING GALAXIES WITH AN EXTENDED ROTATING DISK AT z ∼ 2 , 2016, 1608.05412.

[55]  J. Trump,et al.  Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies , 2015, 1509.00469.

[56]  C. Carollo,et al.  Evolution of density profiles in high-z galaxies: compaction and quenching inside-out , 2015, 1509.00017.

[57]  M. C. Eliche-Moral,et al.  Pathways to quiescence: SHARDS view on the star formation histories of massive quiescent galaxies at 1.0 < z < 1.5 , 2015, 1507.07938.

[58]  R. Somerville,et al.  Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.

[59]  Guillermo Barro,et al.  Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.

[60]  A. Fontana,et al.  The Galaxy Stellar Mass Function at 3.5 Greater Than or Equal to z Greater Than or Equal to 7.5 in the CANDLES/UDS, GOODS-South, and HUDF Fields , 2014, 1412.0532.

[61]  V. Springel,et al.  The formation of massive, compact galaxies at z = 2 in the Illustris simulation , 2014, 1411.0667.

[62]  H. Rix,et al.  A massive galaxy in its core formation phase three billion years after the Big Bang , 2014, Nature.

[63]  M. Bremer,et al.  High-redshift galaxies and low-mass stars , 2014, 1401.6822.

[64]  D. Elbaz,et al.  ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75 , 2013, 1312.1248.

[65]  James T. Allen,et al.  Interpreting the Ionization Sequence in AGN Emission-Line Spectra , 2013, 1310.6402.

[66]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[67]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[68]  A. Laor,et al.  Type 1 AGN at low z – II. The relative strength of narrow lines and the nature of intermediate type AGN , 2012, 1207.5543.

[69]  M. Brotherton,et al.  Erratum: Updating quasar bolometric luminosity corrections , 2012, 1201.5155.

[70]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[71]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.

[72]  P. Hopkins,et al.  Discriminating Between the Physical Processes that Drive Spheroid Size Evolution , 2009, 0909.2039.

[73]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[74]  C. Conselice,et al.  Exploring the Evolutionary Paths of the Most Massive Galaxies since z ~ 2 , 2008, 0807.1069.

[75]  Riverside,et al.  Large Amounts of Optically Obscured Star Formation in the Host Galaxies of Some Type 2 Quasars , 2007, 0709.4069.

[76]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[77]  L. Ho,et al.  A New Sample of Low-Mass Black Holes in Active Galaxies , 2007, 0707.2617.

[78]  G. Rieke,et al.  Spitzer Power-Law Active Galactic Nucleus Candidates in the Chandra Deep Field-North , 2007, astro-ph/0701698.

[79]  M. Lacy,et al.  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[80]  D. Shupe,et al.  Chandra and Spitzer Unveil Heavily Obscured Quasars in the Chandra/SWIRE Survey , 2006, astro-ph/0602228.

[81]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[82]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[83]  IoA,et al.  Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.

[84]  I. Hook,et al.  Evolved Galaxies at z > 1.5 from the Gemini Deep Deep Survey: The Formation Epoch of Massive Stellar Systems , 2004, astro-ph/0408367.

[85]  G. Rieke,et al.  The Nature of Luminous X-Ray Sources with Mid-Infrared Counterparts , 2004, astro-ph/0406153.

[86]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[87]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[88]  Marcin Sawicki,et al.  The 1.6 Micron Bump as a Photometric Redshift Indicator , 2002, astro-ph/0209437.

[89]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[90]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[91]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[92]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[93]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[94]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[95]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[96]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[97]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .