Multifidelity Dimension Reduction via Active Subspaces
暂无分享,去创建一个
Karen Willcox | Youssef Marzouk | Olivier Zahm | R'emi Lam | Y. Marzouk | K. Willcox | O. Zahm | Rémi R. Lam
[1] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[2] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[3] Karen Willcox,et al. Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..
[4] Paul G. Constantine,et al. Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.
[5] Karen Willcox,et al. Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives , 2012 .
[6] Danna Zhou,et al. d. , 1934, Microbial pathogenesis.
[7] Vladimir Koltchinskii,et al. Asymptotics and Concentration Bounds for Bilinear Forms of Spectral Projectors of Sample Covariance , 2014, 1408.4643.
[8] Remi Roger Alain Paul Lam,et al. Scaling Bayesian optimization for engineering design : lookahead approaches and multifidelity dimension reduction , 2018 .
[9] Luca Heltai,et al. Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes , 2016, Advanced Modeling and Simulation in Engineering Sciences.
[10] Roger G. Ghanem,et al. Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..
[11] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[12] William L. Briggs,et al. A multigrid tutorial , 1987 .
[13] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[14] Karen Willcox,et al. Multifidelity Optimization using Statistical Surrogate Modeling for Non-Hierarchical Information Sources , 2015 .
[15] Benjamin Peherstorfer,et al. Optimal Model Management for Multifidelity Monte Carlo Estimation , 2016, SIAM J. Sci. Comput..
[16] Wolfgang Hörmann,et al. Quasi Importance Sampling , 2005 .
[17] Jing Li,et al. An efficient surrogate-based method for computing rare failure probability , 2011, J. Comput. Phys..
[18] Ilse C. F. Ipsen,et al. A Probabilistic Subspace Bound with Application to Active Subspaces , 2018, SIAM J. Matrix Anal. Appl..
[19] Max Gunzburger,et al. A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.
[20] A. Samarov. Exploring Regression Structure Using Nonparametric Functional Estimation , 1993 .
[21] Kirthevasan Kandasamy,et al. Multi-fidelity Bayesian Optimisation with Continuous Approximations , 2017, ICML.
[22] P. A. Newman,et al. Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .
[23] Tiangang Cui,et al. Certified dimension reduction in nonlinear Bayesian inverse problems , 2018, Math. Comput..
[24] Paul G. Constantine,et al. Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model , 2016, Stat. Anal. Data Min..
[25] Matthias Poloczek,et al. Multi-Information Source Optimization , 2016, NIPS.
[26] V. Cevher,et al. Learning Non-Parametric Basis Independent Models from Point Queries via Low-Rank Methods , 2013, 1310.1826.
[27] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[28] G. Rozza,et al. Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.
[29] Jing Li,et al. Evaluation of failure probability via surrogate models , 2010, J. Comput. Phys..
[30] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[31] Jasper Snoek,et al. Multi-Task Bayesian Optimization , 2013, NIPS.
[32] Frances Y. Kuo,et al. Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..
[33] Paul G. Constantine,et al. Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model , 2017 .
[34] Assad A. Oberai,et al. INVERSE PROBLEMS PII: S0266-5611(03)54272-1 Solution of inverse problems in elasticity imaging using the adjoint method , 2003 .
[35] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[36] Simona Perotto,et al. A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.
[37] Juan J. Alonso,et al. Active Subspaces for Shape Optimization , 2014 .
[38] Mario Ohlberger,et al. Data-driven combined state and parameter reduction for inverse problems , 2014, Advances in Computational Mathematics.
[39] Youssef Marzouk,et al. Gradient-Based Dimension Reduction of Multivariate Vector-Valued Functions , 2020, SIAM J. Sci. Comput..
[40] Benjamin Peherstorfer,et al. Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..
[41] Trent Michael Russi,et al. Uncertainty Quantification with Experimental Data and Complex System Models , 2010 .
[42] Zhuyin Ren,et al. Shared low-dimensional subspaces for propagating kinetic uncertainty to multiple outputs , 2018 .
[43] Tiangang Cui,et al. Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction , 2015, J. Comput. Phys..
[44] D. Gleich,et al. Computing active subspaces with Monte Carlo , 2014, 1408.0545.
[45] Qiqi Wang,et al. Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..
[46] Yan Zhou,et al. Multilevel Sequential Monte Carlo with Dimension-Independent Likelihood-Informed Proposals , 2017, SIAM/ASA J. Uncertain. Quantification.
[47] Paul G. Constantine,et al. Accelerating Markov Chain Monte Carlo with Active Subspaces , 2016, SIAM J. Sci. Comput..
[48] Iason Papaioannou,et al. Multilevel Estimation of Rare Events , 2015, SIAM/ASA J. Uncertain. Quantification.
[49] Tiangang Cui,et al. Multifidelity importance sampling , 2016 .
[50] Benjamin Peherstorfer,et al. Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models , 2017, J. Comput. Phys..
[51] Alexander I. J. Forrester,et al. Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.