Two-stage semi-continuous cultivation of Dunaliella salina for β-carotene production

[1]  Zheng Sun,et al.  Synergistic bioconversion of lipids and carotenoids from food waste by Dunaliella salina with fulvic acid via a two-stage cultivation strategy , 2021 .

[2]  S. Mayfield,et al.  Semicontinuous system for the production of recombinant mCherry protein in Chlamydomonas reinhardtii , 2020, Biotechnology progress.

[3]  J. C. Carvalho,et al.  Effects of different culture media on physiological features and laboratory scale production cost of Dunaliella salina , 2020, Biotechnology reports.

[4]  Anil Kumar Singh,et al.  Potential of Microalgae Carotenoids for Industrial Application , 2019, Applied Biochemistry and Biotechnology.

[5]  Eleane de Almeida Cezare Gomes Evaluation of Dunaliella salina growth and corresponding β-carotene production in tubular photobioreactor , 2018 .

[6]  Jang-Seu Ki,et al.  A Review of the Biological Activities of Microalgal Carotenoids and Their Potential Use in Healthcare and Cosmetic Industries , 2018, Marine drugs.

[7]  Sandhya Mishra,et al.  Abiotic stresses as tools for metabolites in microalgae. , 2017, Bioresource technology.

[8]  M. Alvim-Ferraz,et al.  Photobioreactor design for microalgae production through computational fluid dynamics: A review , 2017 .

[9]  Â. P. Matos The Impact of Microalgae in Food Science and Technology , 2017 .

[10]  S. Sayadi,et al.  Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. , 2017, Bioresource technology.

[11]  R. Sen,et al.  Development of an optimal light-feeding strategy coupled with semi-continuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration , 2016 .

[12]  I. Ibrahim,et al.  The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30 , 2016, Plant physiology and biochemistry : PPB.

[13]  M. C. Matsudo,et al.  An investigation into producing Botryococcus braunii in a tubular photobioreactor , 2016 .

[14]  Y. Bakri,et al.  Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. , 2015, Journal of biotechnology.

[15]  A. Solovchenko,et al.  Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae) , 2015, Biochemistry (Moscow).

[16]  S. W. Park,et al.  Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. , 2015, Food research international.

[17]  Rui Manuel Santos Costa de Morais,et al.  Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases , 2015, Marine drugs.

[18]  Jo‐Shu Chang,et al.  Effects of nitrogen source availability and bioreactor operating strategies on lutein production with Scenedesmus obliquus FSP-3. , 2015, Bioresource technology.

[19]  Sunao Sato,et al.  Continuous cultivation of Arthrospira platensis using exhausted medium treated with granular activated carbon , 2015 .

[20]  P. Schenk,et al.  Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. , 2014, Food chemistry.

[21]  Giorgos Markou,et al.  Microalgal and cyanobacterial cultivation: the supply of nutrients. , 2014, Water research.

[22]  Lina Susana Perez Mora Avaliação do crescimento de Botryococcus braunii em reator tubular empregando diferentes concentrações de fontes de nitrogênio e fósforo , 2014 .

[23]  A. Morant-Manceau,et al.  Under low irradiation, the light regime modifies growth and metabolite production in various species of microalgae , 2014, Journal of Applied Phycology.

[24]  L. Medina-Juárez,et al.  Production of biomass and carotenoids of Dunaliella tertiolecta in nitrogen-limited cultures. , 2013 .

[25]  N. Moheimani Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors , 2013, Journal of Applied Phycology.

[26]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[27]  Sunao Sato,et al.  Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation , 2012 .

[28]  H. C. van der Mei,et al.  Bacterial Cell Surface Damage Due to Centrifugal Compaction , 2011, Applied and Environmental Microbiology.

[29]  R. Bezerra,et al.  CO2 from alcoholic fermentation for continuous cultivation of Arthrospira (Spirulina) platensis in tubular photobioreactor using urea as nitrogen source , 2011, Biotechnology progress.

[30]  Helena M. Amaro,et al.  Microalgae as Sources of Carotenoids , 2011, Marine drugs.

[31]  A. Prieto,et al.  Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. , 2011, Journal of biotechnology.

[32]  F. Lu,et al.  Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. , 2008, Food chemistry.

[33]  J. A. Campo,et al.  Outdoor cultivation of microalgae for carotenoid production: current state and perspectives , 2007, Applied Microbiology and Biotechnology.

[34]  J. Rivas,et al.  Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds , 2007, Applied Microbiology and Biotechnology.

[35]  S. Purton,et al.  Microalgae as bioreactors , 2005, Plant Cell Reports.

[36]  F. Florencio,et al.  Production of Dunaliella salina biomass rich in 9-cis-beta-carotene and lutein in a closed tubular photobioreactor. , 2005, Journal of biotechnology.

[37]  A. Prieto,et al.  Conditions for open-air outdoor culture of Dunaliella salina in southern Spain , 2003, Journal of Applied Phycology.

[38]  J. D. del Campo,et al.  Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). , 2000, Journal of biotechnology.

[39]  M. J. Río,et al.  Low-temperature-induced β-carotene and fatty acid synthesis, and ultrastructural reorganization of the chloroplast in Dunaliella salina (Chlorophyta) , 1996 .

[40]  M. Borowitzka,et al.  The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant , 1984, Hydrobiologia.

[41]  K. Sundmacher,et al.  Flow cytometry enables dynamic tracking of algal stress response: A case study using carotenogenesis in Dunaliella salina , 2016 .

[42]  A. Banaoui,et al.  Effect of the medium culture on cells growth and accumulation of carotenoids in microalgae hypersaline Dunaliella sp. isolated from salt ponds of the region of Essaouira in Morocco , 2015 .

[43]  A. Solovchenko Physiology and adaptive significance of secondary carotenogenesis in green microalgae , 2013, Russian Journal of Plant Physiology.

[44]  I. Priyadarshani,et al.  Commercial and industrial applications of micro algae - A review , 2012 .

[45]  S. Al-Hooti,et al.  Induction and extraction of β-carotene from the locally isolated Dunaliella salina , 2010 .

[46]  P. Bernstein,et al.  Microbial xanthophylls , 2005, Applied Microbiology and Biotechnology.

[47]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[48]  L. Schrader,et al.  Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid , 1975 .